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Abstract

We consider the problem of learning the state of dynamic network with vertex values that are
perturbed over time. Our only interface to the network comes in the form of point probes, where
we are allowed to query local information about the state of a specific point in the network. In
this paper, we consider network models where the values of the vertices are perturbed uniformly
at random at every time step, and where we may only query adjacent vertices to determine
whether or not they have the same value. This model is drawn from numerous practical examples,
where determining the precise value of a vertex is impossible, but differentiating between adjacent
vertices with disagreeing values is feasible.

Under this model we consider both the noiseless and noisy cases, where in the latter our
probes are subject to a uniform noise with probability α. We first derive a clear inverse linear
lower bound tradeoff between the number of probes and the fraction of errors in the network
for either case. In the noiseless case, we design a algorithm which randomly initializes and
then deterministically traverses the network to update a hypothesis state. We show that our
algorithm is always within a constant factor of the lower bound for arbitrarily high polynomially
many time steps with high probability. For the noisy case, the problem becomes substantially
more difficult, and performance will depend on the expansion of the graph. We show that an
algorithm which allows at least k ∈ Ω( log(n)

1−λ2
r) probes on every time step never accumulates more

than O( n√
r
) errors at any time for arbitrarily high polynomially many time steps, assuming that

α−1 ∈ Ω(k), and where (1− λ2) is the spectral gap of the graph. An alternate analysis shows
that for quadratically many time steps we can tighten this bound to O( n

r(1−α log(n)
(1−λ2) )

) assuming

α−1 ∈ Ω(k2). Furthermore, we demonstrate that if the number of errors accumulated at time t
exceeds our bounds by a factor of M , then in expectation we return back within the bound in at
most O(n log(M)) steps.

Since our bounds for the noisy case are not as tight (we lose at least logarithmic factor in
the probe-error tradeoff), we demonstrate experimentally that our algorithm in the noisy case
appears to perform just as well as the theoretical performance of our algorithm in the noiseless
case.
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1 Introduction
The augmentation of a network structure with vertex values, or labels, is a natural enhancement
and captures a variety of interesting of real world phenomenon. For instance, the augmentation of
social network models with certain binary traits of the members, such as political classification or
any number of other binary divisors of a target audience. Additionally notable is the application to
computer vision, where the graph in question is the grid (or to simplify the analysis the discrete
torus: Zn × Zn). Here each vertex represents a pixel in an n× n video image, and vertex values
can then be utilized for foreground background segmentation. Indeed, this setting was considered
explicitly for the static case in [3]. Our paper can be seen as a dynamic version of [3], where vertex
values are perturbed over discretized time steps. This can correspondingly be seen as moving from a
static image to a dynamic video feed, where the pixel labellings, such as foreground and background,
are changing as the image in the feed changes.

An important characteristic of the algorithmic framework which we consider in this paper is
that each every time step we are only allowed to probe a certain, generally assumed to be constant
or polylogarithmic, number of edges in the graph, and we are then told whether or not the incident
vertices have agreeing labels. This is the same model of edge observations used in [3]. Our method
of transporting a static algorithm to a dynmic setting bears resembalance to the method of [1],
where quicksort is reintroduced on a stochastically evolving array.

Now our model of allowing only edge observations and not vertex observations captures an
important feature of the practical applications from which our model arises. Namely, it is frequently
impractical to determine, based on looking at one pixel (or individual in a social network) alone,
whether or not it is in the background (or of a particular binary classifier). However, by looking
at adjacent pixels (or friends in the network), it may be much easier to determine whether the
two vertices should have the same classification. For pixels, a simple method of doing this is by
computing the `1 distance between the RGB values of adjacent pixels, and determining that they
are alike if the distance falls under a certain threshold parameter. Of course, any such comparison
method will fail with some probability, which we refer to as noise in the edge probes. In Section 3
we introduce an algorithm to produce good results even with this noise.

Different models for stochastically evolving networks have been considered before. For instance,
in [2], the authors consider a similar notion of an evolving graph where the actual topology of the
graph, vertices and their neighborhoods are perturbed over time. In our paper we assume that
the topology of network is fixed, and focus instead on perturbations in vertex labellings. However,
it would be perhaps interesting to examine models where both the network topology and vertex
labeling are perturbed over time.

1.1 Results & Techniques

The model which we consider in this paper is as follows: we have a graph with binary vertex labels
which flip i.i.d. at every time step with probability β. Our algorithm is allowed to probe an edge
and given the XOR of the two adjacent vertices. The goal is then to maintain a hypothesis vector
of the values of the vertices that has close `1 distance to actual values at any time step. This is a
streaming variation of the model considered in [3]. In this setting, we first derive lower bounds for
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the expected number of errors for any algorithm running out algorithm in the model.

Theorem (1). In the stochastic network model where vertices are flipped by nature with probability
β, any algorithm which uses at most k probes on every time step never accumulates less than
β n

2

4k − β
2 n

2k errors at any time step in expectation.

For practical purposes it makes sense to consider only settings where the expected number of
flips on every time step is constant, thus we specify to β = 1

2n in this paper, although our results
hold for any constant multiple of this probability. Being the case, our lower bound demonstrates an
lower bound of a linear error-probe tradeoff in expectation. We then introduce the Trailing Walks
Algorithm, which demonstrates that this lower bound can be nearly met with high probability (and
not just in expectation) for polynomially many time steps.

Theorem (7). Let nε be the number of initial errors of our hypothesis at time t = 0, and fix any
k = k′(r + s), and fix γ > 0, δ ≥ 1. Then with probability at least (1− e

nγ )(1− e−
δn

6sk′+log T )(1− 3
k′ )

the (k′, r, s)-Trailing Walks Algorithm has no more than 4(log(k′))2nε+ (1 + δ) n
2sk′ errors at any

time at all before t = T
nγ where T is as in Lemma 1.

Remark. Note that T ∈ O((n2 )(r+1)/2 1
k′ )

We then generalize to the case of edge noise. In other words, the case of the prior model but
with the additional complication that every edge probe is given the incorrect XOR value with some
fixed uniform probability α. For practical purposes, we assume that probing an edge multiple times
on the same time step will not yield different results. Note that if we allowed this, then repeating
the same algorithm from the noiseless section but probing each edge logarithmically many more
times would yield an obvious algorithm to ensure the same bounds with high probability. It turns
out, however, that after disallowing this the problem becomes quickly infeasible for constant values
of α. In order to solve the problem theoretically, our algorithm requires that α is in O( 1

k ). Given
that k is generally assumed to be at most polylogarithmic, this is as close to constant as α will
practically be.

Given this, our algorithm probes random paths and, via a majority vote from our hypothesis in
the prior step, decides which labeling such a path should receive. In order for such a random path
sample to be uniform, which will be required as we will later see, the minimum length k′ of the
path must depend on the spectral expansion of the graph. We prove that our algorithm, known
as the Expander Sampling algorithm, performs nearly as well in the case that our graph is a good
expander and the edge noise is not too large. The following theorem provides our main error bound
for the Expander Sampling Algorithm.

Theorem (17). Suppose vertices flip i.i.d. with probability 1
2n . Then given k = k′ ≥ 2560(c+q) log(n)

(1−λ2)
probes per time step, and assuming α ≤ 1

60(k′) and k′ ∈ o( n
log(n)), with probability at least (1− 6

nc ),
the maximum number of errors that the Expander Sampling algorithm encounters before time T = nq

is at most n
(√20(c+q) log(n)

(1−λ2)k′ + 12αk′
)

+ 2(q + c+ 1) log(n)k′.

Note that M need be at most O(q log(n)) for the result to hold with high probability. An
alternate analysis following the proof of the above theorem gives the following stronger theorem for
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a smaller time horizon if we have that α−1 ∈ Ω(k2), along with some additional properties of our
algorithm. We first prove a bound on the expected number of errors at any given time step.

Theorem (18). Assume α−1 > 2(k′)2r. Then the Exapnder Walks Sample algorithm which uses at
least k′ ≥ 160 c log(n)

(1−λ2) probes on any one path has expected number of errors E[εtn] ≤ n
r (1− αk′)−1

for all t ≤ T .

And then the primary theorem:

Theorem (21). Let G be any graph with spectral gap (1− λ2). Fix any integers r, c ≥ 1, and let
k = k′r ≥ 2560rc log(n)

(1−λ2) be the number of probes we allow our algorithm per time step. Further
assume that the edge noise satisfies α−1 > 2(k′)2r. Then with probability at least (1 − 1

nc−2 ), the
maximum number of errors that Expander Sampling algorithm accumulates at any time ever before
T is less than n

r(1−αk′)
(
1 +

√
8c log(n)

)
, where T = (E[εtn]

k )2 ≥ ( n
k2 )2

2 Noiseless Probes

2.1 The model

We first introduce our model, which can be seen as a streming variation of the model examined in
[3]. Our model however only allows edge probes, and not vertex probes. Furthermore, we generalize
to arbitrary graphs beyond the grid, which was the graph for which the main results of [3] hold.

Fix a graph G with vertices v1, . . . , vn. Each vertex has a value in {0, 1} at every discrete time
step t, which we denote vi,t. Our goal is to maintain a hypothesis of the value of vi,t, which we will
denote by ht(vi). We assume that at time t = 0 we start with nε0 errors for some fixed 0 ≤ ε0 < 1
(our hypothesis is wrong on an ε0 fraction of the vertices). The model is then as follows:

• At time t = 0, there are exactly nε0 vertices vi such that vi,0 6= h0(vi) has size nε0

• At the start of every time step, each vertex is flipped by nature uniformly and i.i.d. with
probability β, and otherwise remains unchanged with probability 1− β.

• At every time step we are allowed to probe k edges, for some fixed k.

• For each edge that we probe, we are told whether the vertices on the edge agree or disagree.
In other words, we are told the xor (⊕) of the two vertices.

• The goal is to maintain a hypothesis ht(vi) of vi,t such that the `1 distance ‖ht(G)−Gt‖1 is
small.

Thus at the start of any time step t, every vertex is flipped with some probability by nature, after
which the value vi,t is determined for all vi ∈ G. Then we probe k edges, and after this we define
out hypothesis ht(vi). Generally we assume k to be a constant, thus it is natural to work with
probabilities for nature flipping vertices that result in a constant number of changes per time step.
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If, on the other hand, the expected number of changes per time step is on an order larger than k,
the problem clearly becomes intractable (this can be seen easily from Theorem 1).

We begin by proving a general lower bound on expected the number of errors accumulated by
any algorithm in this model.
Theorem 1. In the above model where vertices are flipped by nature with probability β, any algorithm
which uses at most k probes on every time step never accumulates less than β n2

4k − β
2 n

2k errors at
any time step in expectation.
Proof. We first consider, given any observation set of probes, which output hypothesis for the labels
of the vertices which has the lowest expected error. Now since when probing an edge we gain only
information about the two vertices in question, and since nature flips vertices independently, it
follows that conditioning on an edge observation can only change the probabilities of the values
of the two vertices in question. So the very best any hypothetical algorithm could do is always
correcting the value of any vertex it sees in an edge probe.

Now suppose that the probes made by any k-algorithm are ordered by any time t. Let Si be
the set of vertices that are seen in the i-th to last step. Note again that each probe shows the
algorithm at most 2 vertices, any algorithm can see at most 2k vertices at a given time step. Then
the expected number of errors is at least :

β
t∑
i=1
|Si|i− Γ

Where Γ is the expected number of vertices that flip twice in the sets S1, . . . , Sdn/(2k)e since the
algorithm viewed them last. Regardless of Γ, this sum is minimized by having |Si| = 2k for
i = 1, 2, . . . , dn/(2k)e. Thus the expected number of errors is at least

≥ 2kβ
dn/(2k)e∑
i=1

i− Γ = 2kβ
(dn/(2k)e(dn/(2k)e+ 1)

2
)
− Γ ≥ βn

2

4k − Γ

Now note that the probability that a vertex flips twice in n
2k steps is less than β, thus it follows

Γ < n
2kβ

2, so

β
n2

4k − Γ ≥ βn
2

4k − β
2 n

2k
�

Corollary 2. If β−1 ∈ Θ(n) then the for any algorithm a lower bound for the expected number of
errors at any time step is Ω(n/k). In particular, if β = 1

2n , the expected number of errors is at least
n
8k − 1.
Proof. Follows from Theorem 1. �

Remark 1. Following from Corollary 2, for the rest of this paper we will specify to β = 1
2n . The

bounds given in the paper can be easily generalized however to any other value of β that differs by a
constant factor.

We introduce now the Trailing k walks algorithm. First we provide some justification for the
construction of our algorithm algorithm, along with some intuition.
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2.2 Intuition

In this model, observe the following fact: if we know that our hypothesis for a vertex vi at time t
is correct with certainty, then if vj is any neighbor of vi then we can probe the edge (vi, vj) and,
along with the information ht(vi), we can correctly determine the value of vj . Thus if we know the
value of one vertex with certainty we can determine the values of all those around it with certainty.
Exploiting this fact, we could take a deterministic walk where we fix the neighbors of every vertex
we see on the walk with certainty. Meaning if C is a hamiltonian cycle in G (or a cycle that visits all
vertices that has length n+O(1)), then we can just walk down the cycle in order one step at a time
fixing everything we see. If we are allowed to probe k edges at a time, we can take k deterministic
walks at a time, traversing all the vertices of G in the order specified by C and fixing everything.
There are only two (fatal) problems:

1. If we start on a vertex v that we are wrong about, then we are in trouble since we will change
all vertices on the path to be incorrect.

2. If, in the middle of the step between vi and vj , either vi or vj is flipped then we will also be in
trouble. To avoid this we then have to determine whether vi was flipped at every time step
first. To do this we may, for instance, probe the vertex before vi to see if it agrees with what
we expect. But even in this case:

3. Worstly, if both vertices are flipped (vi and the one before it) on the same time step t, then
even if we check the last edge we probed before we move on to the new one to see if any
changes are made, then we may continue on making errors thinking that we are correct and
that nothing changed.

Note that the probability of case 1 depends on how many errors there are when we start our
algorithm, case 2 occurs in expectation once every 2n steps of a single path, and case 3 occurs in
expectation once every 4n2 steps of a single path. So we need to avoid these cases.

We solve this problem by keeping track of a trailing set of "correct" vertices which we have
already fixed. At every time step, we probe the edges between all these verices and reassign them
the value that makes the most sense given their value in the last step. Then, and only then, do we
probe the next vertex in the path and set it’s value to agree with the one we last probed (which
was part of our trailing correct set). On the next time step we add the new vertex to the set and
subtract the oldest one from this set.

2.3 The k-Trailing Walks Algorithm

Let vi,t be the actual value of vi at time t, and let ht(vi) be our hypothesis. We assume we know
the starting state with probability 1− 1/ε, thus h0(vi) 6= vi,0 with probability at most ε < 1 for all
vi ∈ G. This means we start with εn errors.

Our algorithm is as follows. We fix a cycle that goes through all the vertices of G that we
will traverse. We will later show how to generalize to graphs which do not contain such a cycle
(see Theorem 9). As we traverse this cycle we probe the edges in it and fix the vertices along the
way to agree both the edge observations and our prior hypothesis. This process was described
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earlier. However, we make two crucial changes. Firstly, instead of traversing starting at one place,
we traverse starting from k′ places on the cycle simultaneously. Thus at every time step we move
down the cycle at some uniform rate starting from k′ distinct positions. We call each independent
traversing process a thread of the algorithm (in the sense of multithreading). Secondly, for every
thread, we keep track of a trailing set of the last r vertices that that thread saw. Before attempting
to fix the next vertex in line for a given thread, that thread will first probe all the edges in its
trailing set and update its hypothesis for the entire trailing set in tandem. Since probing all edges
in a path forces the set of vertices to take on one of two possible assignments (determined uniquely
by whether or not we declare any one vertex to be 1 or 0), we choose to update our hypothesis to
be the assignment, out of the two, that has the least number of changes from our prior hypothesis.

So let C be a cycle such that every vertex v ∈ G appears in C at least once. Order the vertices
of the cycle v0, v2, . . . , vm−1, v1 . . . where m = |C|. For now we assume m = n, and we will later
show how to deal with graphs which do not contain a Hamiltonian cycle. Our algorithm will be
given as input a parameter k′, the number of threads, positive odd integer r, which determines the
size of our trailing set, and a integer s which determines how many steps on the path we will take
on every step. Thus our algorithm will use a total of k′(r + s) probes every time step, where k′
is the number of threads, r the size of the trailing set, and s the number of steps taken forward
on every step. First several definitions useful in describing our algorithm are given, and then the
algorithm is stated formally below.

Definition 1. We call the Trailing Walks algorithm that uses k = k′(r + s) probes, consisting
of k′ threads each with a trailing set of size r and each which take s steps on every time step a
(k′, r, s)-Trailing Walks Algorithm.

Definition 2. We say that a thread Tj is good at time t if ht(Sj) is entirely correct and contains
no errors. We say that a thread is bad if it is not good. We say that a thread flips at time t if it
goes from being good to bad on time t.

Definition 3. We say that a thread Tj is at the position vi at time t, denoted Ft(Tj) = vi, if vi was
the last edge on the path probed by Thread Tj at time t.
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Algorithm 1 k-Trailing Walks (initialization t = 1)
Input: (k′, r, s), cycle C, and initial hypothesis h0

1: Set h1 ← h0
2: for i = 1, 2, . . . , k′ do
3: Uniformly sample σ(i)←−

U
{0, 1, . . . , |C| − 1}.

4: end for
5: for j ∈ {1, . . . , k′} do
6: Initialize Sj ← ∅.
7: Set F1(Tj)← vσ(j).
8: for i = σ(j), (σ(j) + 1), . . . , (σ(j) + r + s mod |C|) do
9: Probe the edge e← (vi, vi+1) and pick x ∈ {0, 1} so that h0(vi)⊕ x = e.

10: Update h1(vi+1)← x.
11: Set Sj ← Sj ∪ {vi}.
12: if |Sj | > r + 1 then
13: Sj ← Sj \ {vi−(r+1) mod |C|}
14: end if
15: F1(Tj)← i
16: end for
17: end for

Algorithm 2 k-Trailing Walks (time t)
1: for j ∈ {1, . . . , k′} do
2: Initialize Stj ← St−1

j and E ← ∅ and ht+1 ← ht
3: for (vi, vi+1) ∈ E(Sj) do
4: Probe the edge e← (vi, vi+1).
5: Add E ← E ∪ {e}.
6: end for
7: Let I1, I2 be the two possible assignments to Stj which agree with E.
8: Set ht(Stj)← arg minI∈{I0,I1} ‖ht−1(Stj)− I‖1.
9: for i = Ft(Tj), Ft(Tj) + 1, . . . , Ft(Tj) + s mod |C| do

10: Probe the edge e← (vi, vi+1) and pick x ∈ {0, 1} so that ht(vi)⊗ x = e.
11: Update ht+1(vi+1)← x.
12: Stj ← Stj ∪ {vi}.
13: if |Stj | > r + 1 then
14: Stj ← Stj \ {vi−(r+1) mod |C|}
15: end if
16: Ft(Tj)← i
17: end for
18: end for
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Remark 2. Note that if one of our threads starts on an error, then until it is flipped into a good
thread we can assume that it will only ever create errors. We call such a thread a bad thread (a
thread that is wrong on every one of it’s trailing set hypothesis). The number of errors such a thread
will cause is the distance between the thread’s starting location in C and the next thread behind it
that is correct, since a correct thread trailing behind a bad thread will correct the errors it made
when it reaches them.

Remark 3. In line 8 of Algorithm 2, we pick the wrong assignment for the trailing set Sj only
when more than half of the |Sj | = r vertices are flipped by nature in a single time step.

2.4 Analysis of Algorithm 2

Lemma 3. When running the k-walks algorithm for k = k′(r + s), the probability 1
T that at least

one thread goes from being good to bad at any time t ≥ r is at most

1
T
≤ k′

( 2
n

)(r+1)/2

Proof. Any one of the k′ threads goes bad only if more than half the vertices in the trailing set flip
in one time step. Since each trailing set consists of r distinct vertices which all flip with independent
probabilities, the probability that this occurs for any one thread is given by:

r∑
j=(r+1)/2

(
r

j

)( 1
2n
)j

(1− 1
2n)r−j ≤ 2r−1( 1

2n)(r+1)/2 ≤
( 2
n

)(r+1)/2

Using the union bound, the probability that at least one thread flips is at most k′ times this above
bound, which gives the desired inequality. �

Now given that it is unlikely that any of our threads flip on a given time step, we now analyize
the probability that we begin on an error and, if so, how many errors this may cause us. Let B(k′, ε)
be the binomial distribution (this gives the distribution over the number of starting bad threads).
Let E ⊆ {0, 1, 2, . . . , |C| − 1} be the subset of error vertices with expected size nε. Lemma 5 will
demonstrate that it suffices to generate E by adding every vertex in the path to E i.i.d. with
probability ε. Let Zk′,ε(E) be a random variable, as a function of E, that is sampled in the following
way.

1. First pick k′ values uniformly from {0, 1, 2, . . . , |C| − 1}. Call them a1, a2, . . . , ak′ .

2. Set di = a(i+1) (mod |C|) − ai (mod |C|) for i = 1, 2, . . . , k′.

3. Define D = {di | ai+1 ∈ E}.

4. Return Zk′,ε =
∑
di∈D di.

Lemma 4. Suppose that before time T , no thread in our algorithm flips. Then if E ⊂ V (G) is the
set of bad vertices at time 0, then the random variable Zk′,ε(E) is an upper bound on the number of
errors that our algorithm makes due to bad threads at any time t ≤ T .
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Proof. If no thread has flipped yet, then we can assume that all threads that were bad initially
stay bad, and vice-versa for good threads. Since the only errors that we contribute are the errors
due to bad threads, we first need only identify the distribution over initial bad threads, and then
determine how many errors can be attributed to each. A thread is bad if it starts in the set E as
defined above, and since we choose the starting vertices of each thread uniformly at random then
the distribution over initial bad threads is given by steps 1. and 2. of the algorithm for Zk′,ε(E).

Now for each bad thread Ti, the number of errors that are due to it at any time step is at most
the number of vertices between it and the next good thread behind it. This is because all vertices
that Ti visits will become errors, but they will only remain errors until they are fixed by the next
good thread trailing behind Ti. Now if the next thread behind Ti, say Tj , is also bad, then we only
attribute the errors on the vertices between Ti and Tj to the thread Ti. We do this since the total
number of errors made by a sequence of consecutive bad threads is still the distance between the
farthest thread and the first good thread behind it, which is equivalently the sum of the distances
between each bad thread and the thread behind it, which is precisely how Zk′,ε(E) is constructed.
Note that since vertices may be repeated, we may overcount a vertex that lies several times on the
path between a good and bad thread. Thus Zk′,ε is a strict upper bound in this case.

�

Lemma 5. The distribution of Zk′,ε(E) does not depend on the initial set E but only only the size
of E.

Proof. This is easy to see, since the k′ initial values were chosen uniformly at random. �

Lemma 6. With probability no more than Poly( 1
n ,

1
(k′)) will we ever have Zk′,ε > 4(log(k))2nε.

Furthermore, with probability at least (1− k′ε) we have Zk′,ε = 0.

Proof. It suffices then to consider E generated by i.i.d. adding each vertex into E with probability
ε. First we examine the binomial portion of the R.V. to bound the number of ai’s that begin in the
set E. This is given by the binomial distribution B(k′, ε). Using Chernoff bounds, it follows.

Pr
[
B(k′, ε) > (λ+ 1)k′ε

]
≤ e−

λk′ε
3

Now let a1, . . . , ak′ be the random positions in {0, 1, 2, . . . ,m−1} that our algorithm choses, and
randomly mark B(k′, ε) of them, and call that set A. We analyze the sum

∑
ai∈A |ai − ai−1 (mod m)

(mod m)|. An upper bound can be placed on this by a balls and bins argument. First split the cycle
|C| into k′ equally sized intervals of length m

k′ . Let X1, . . . , Xk′ be random variables denoting which
each interval the ai’s are placed into. Let f(X) be the number of empty bins as a function of these
R.V.’s. We now construct the Doob martingale, giving:

Bi = EXi+1,...,Xk′

[
f(X) | X1, . . . , Xi

]
Fact 1. The above construction B1, . . . , Bk′ is always a martingale.

Clearly |Bi −Bi−1| ≤ 1. Thus, using this bounded difference property, we can apply Azuma’s
inequality to yield:
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Pr[f(X1, . . . , Xk′)− E[f(X1, . . . , Xk′ ] > ε)] ≤ e−
2ε2
k′

Now note that the expected number of empty bins is E[f ] = k′(1− 1
k′ )

k′ when there are k′ balls
and bins. Thus with probability at least 1− 1

k′ , we never have more than k′(1− 1
k′ )

k′ +
√

2k′ log(k′)
empty bins. Let E be the number of empty bins. Now the empty bins are uniformly distributed, so
the probability than any one bin is empty is (1− 1

k′ )
k′+

√
2 log(k′)

k′ ≤ 1
e +

√
2 log(k′)

k′ ≤ 1
2 for reasonable

values of k′. Thus the probability that ` consecutive bins are empty is at most k′2−`. Thus with
probability at least 1− 1

k′ there are no more than 2 log(k′) consecutive empty bins, and we have
Zk′,ε ≤ (λ+ 1)εn log(k′) where λ is as before. Now we consider two cases.

Case 1: kε ≥ 1. In this case set λ = 3 log(k′), we conclude with probability at least (1− 1
(k′)kε )(1−

1
k′ )

2 ≥ (1− 3
k′ ) we have Zk′,ε ≤ log(k)(3 log(k′) + 1)εn ≤ 4(log(k′))2nε

Case 2: kε << 1, then note that Pr[B(k′, ε) > 0] ≤ (1− ε)k′ ≥ (1− εk′). Thus with probability
at least (1− εk′) we have Zk′,ε = 0.

�

Observe that E[Zk′,ε] = k′ε( nk′ ) = nε, since the expected distance is n
k′ and we expect there to

be kε bad (marked) threads. We now begin the analysis of the entire algorithm.

Theorem 7. Let nε be the number of initial errors of our hypothesis at time t = 0, and fix any
k = k′(r + s), and fix γ > 0, δ ≥ 1. Then with probability at least (1− e

nγ )(1− e−
δn

6sk′+log T )(1− 3
k′ )

the (k′, r, s)-Trailing Walks Algorithm has no more than 4(log(k′))2nε+ (1 + δ) n
2sk′ errors at any

time at all before t = T
nγ where T is as in Lemma 1.

Remark 4. Note that T ∈ O((n2 )(r+1)/2 1
k′ )

Proof. We prove the result by showing that with high probability no thread flips at any time before
T . Now note that the probability that at least one thread flips on any time step t is independent of
the total number of errors. Moreover, it depends only on the vertices that are flipped by nature
during time step t. So this probability does not depend on the number of errors at time t nor on
where those errors are. So let xt be a random variable defined as:

xt =
{

1 if at least one thread flips at time t
0 otherwise

Then xt is independant from xt′ for all t 6= t′. Using the union bound, we know that E[xt] ≤ 1
T

where T is as in Lemma 3. Let Xt =
∑t
j=1 xj . Note that E[Xt] ≤ t

T . Using Chernoff bounds we
have:

Pr
[
Xt ≥ (1 + δ) t

T

]
≤ Pr

[
Xt ≥ (1 + δ)E[Xt]

]
≤
( eδ

(1 + δ)1+δ

)E[Xt]

11



Now set δ = T
t − 1, we obtain:

≤
( eTt −1

(Tt )
T
t

)E[Xt]
≤
( eTt −1

(Tt )
T
t

) t
T = e1− t

T

T
t

Now if we set t = 1
nγ T for γ > 0, we obtain:

Pr
[
Xt ≥ 1

]
≤ e1− 1

nγ

nγ
≤ e

nγ

We have proven that with probability at least 1− e
nγ , no thread flips from being bad to good or vice

versa at any time step t ≤ T
nγ . This is an lower bound on the probability that we never accumulate

more than Zk′,ε errors from bad threads at time t ≤ T
nγ . Coupled with Lemma 6, we obtain the first

term in the bound.
Now we move to analyzing the n

2sk′ term. These are the errors made by nature. Note that an
error from nature can only occur if nature flips a vertex we are right about into one we are wrong
about. Let

bi,t =
{

1 if vi,t 6= vi,t−1

0 otherwise

Then these random variables are i.i.d., so let BT =
∑T
t=1

∑n
i=1 bi,t. Chernoff bounds give:

Pr
[
Bt ≥ (1 + δ) t2

]
≤ e−

δt
6

where δ ≥ 1. Since we see every vertex every n
sk′ steps (whether by good or bad threads), the

number of errors due to nature’s flips at any time is strictly less than B n
sk′

. We have

Pr
[
B n
sk′
≥ (1 + δ) n

2sk′
]
≤ e−

δn
6sk′

Thus the probability that we never have more than (1 + δ) n
2sk′ errors due to nature in any one

round is at least 1 − e−
δ2n
6sk′ . In t steps we have t sk′n rounds. Thus, given t ≥ n

sk′ , the probability
that in the first t time steps we never have more than (1 + δ) n

2sk′ errors due to nature is at least

(
1− e−

δn
6sk′
) tsk′

n ≥
(
1− tsk′

n
e−

δn
6sk′
)
≥ 1− e−

δn
6sk′+log t

Setting t = T
n , and putting together this bound with the upper bound on making more than Zk′,ε

bad thread errors, we obtain the desired result in the theorem �

Corollary 8. If there are no initial errors, meaning ε = 0, then setting k′ = 1 we have k = r + s.
Then for δ > 1, with probability at least (1− e

n)(1− e−
δn
6s+log(T )) we never obtain more than (1 + δ) n2s

errors at any time at all before T
n ∈ O(n(r−1)/2)

12



Now recall that during the above analysis we assumed |C| = n. In other words, we assumed
that the graph in question was Hamiltonian. This, however, is a rather strict requirement and
not realistic in practice. However since nature flips vertices independently from their neighbors, if
we partition G into cycles and run the k-Trailing Walks Algorithm on each cycle independently,
distributing the relevant probes in amounts proportional to the respective sizes, then we can still
apply the bounds from Theorem 7. The following Theorem formalizes that this can be done for all
graphs.

Theorem 9. Let G be any graph, and let V (G) = C1
∐
· · ·
∐
Cd
∐
X be any partition of the vertices

such that each Ci is a cycle. Then the errors obtained by running the k-Trailing Walks algorithm on
each subgraph Ci admit the error bounds given by Theorem 7 applied to each subgraph, plus at most
the additional cost |X| at any time step.

Proof. The errors in each Ci are independent of each other, so running the k-Trailing Walks
Algorithm on each result in independent error bounds, so Theorem 7 can be applied to each as
desired. Since we do not attempt to fix the remaining vertices X, the additional cost |X| can be
incurred, but clearly no more due to neglecting X. �

We now state a simplified version of prior results which demonstrates that the desired error
bound holds in expectation. While weaker than Theorem 7, it aids in giving intuition for where the
asymptotic bounds in Theorem 7 come from.

Theorem 10. Let nε be the number of initial errors of our hypothesis at time t = 0, and fix any
k = k′r. Then the expected number of errors of the trailing k-walks algorithm at any time step is
nε+ n

2k′ errors at any time t ≤ T ≈ 1
k′O

(
nb

r
2 c
)
, where T is as in Lemma 1.

Proof. Our algorithm starts k′ threads on uniformly random vertices in C, each having probability
ε of starting on an error. So in expectation, only k′ε threads will start in an error. For each thread
that does not start in an error, we expect that it will not flip into an error thread in the first
T = O

(
nb

r
2 c
)
steps, since more than half of the trailing set Sj for a thread must be flipped in one

time step in order for a good thread to become bad and vice-versa. Similarly, we do not expect bad
threads to flip into good one’s during this timeframe, thus we can assume that bad threads stay
bad and good threads stay good for t ≤ T ≈ 1

k′O
(
nb

r
2 c
)
.

Now fix any bad thread, say it starts at vi. Then that thread will incorrectly set the hypothesis
values for each of vi, vi+1, . . . , vi+τ after τ time steps. However, once the good thread that started
at a vertex vj closest behind vi (of all other good threads) reaches vi, it will fix it to be good again.
Thus the number of vertices that can be incorrect at any given time because the initial bad thread
made them so is the number of time steps it takes for the previous good thread to reach vi and fix
it, which i− j. Now there are n vertices in the cycle, and we assume that the cycle has length n (or
is very nearly hamiltonian), and we start k′ threads uniformly at random in this cycle. Thus we
expect that i− j = n

k′ , thus in expectation a bad thread creates at most n
k′ errors. Note that it is

possible that m bad threads be started consecutively, in which case we expect that i− j = m n
k′ if

the farther one starts at vi. However this factor of m is already taken into account since we are
multiplying by the expected number of bad threads, which is εk′, and this value is independent of

13



how far apart any two consecutive threads are. Since we expect there to be εk′ bad threads, we
obtain an expected εk′ nk′ = nε errors due to bad threads.

Finally, node that in expectation, at any time step all vertices have been probed at least once in
the last n

k′ time steps. Since the bad threads will only create errors, we need not account for nature
changing the values of the bad threads (since this would only remove our errors). So we have at
most n vertices which have not been probed in n

k′ time steps, each with 1
2n chance of flipping on

each time step. Thus we expect no more than n
2k′ additional total changes of good vertices into bad

one’s as a result of nature’s random perturbations. Together with the errors from the bad threads,
we obtain the desired nε+ n

2k expected errors at any time t ≤ T . �

3 Noisy Probes
We now consider a generalization of the previous model, namely where there is noise in our edge

probes. The model is as follows. We have a graph G with nε0 initial errors, and nature flips the value
of each vertex uniformly with probability 1

2n . For the purposes of this analysis, we assume ε0 = 0,
however the results of this section can be similarly obtained by setting ε0 to be the expectation
from Theorem 18. Further suppose that on every edge probe we have an α probability of an error
for 0 < α < .5. Meaning, for each edge we probe e, with probability 1− α we receive the correct
¬XOR of the vertices in the edge as in the last model, and with probability α we recieve the incorrect
value. Thus, our entire model can be summarized as follows:

• At time t = 0, there are exactly nε0 vertices vi such that vi,0 6= h0(vi) has size nε0

• At the start of every time step, each vertex is flipped by nature uniformly and i.i.d. with
probability 1

2n , and otherwise remains unchanged with probability 1− 1
2n .

• At every time step we are allowed to probe k edges, for some fixed k.

• For each edge that we probe, we are told whether the vertices on the edge agree or disagree
with probability 1− α, and we are told the opposite of this with probability α.

• The goal is to maintain a hypothesis ht(vi) of vi,t such that the `1 distance ‖ht(G)−Gt‖1 is
small.

Remark 5. As we will see shortly, the following analysis does not utilize the fact that vertex values
are being flipped uniformly at random specifically, but only that we can place a bound stating that no
more than logarithmically many vertex values are flipped with high probability. Thus, the following
analysis, and in particular Lemma 14, will hold for any distribution over vertex value perturbations
such that a high probability bound can be placed on the number of flips that occur in a given time
step.

3.1 Difficulties with obvious algorithms

In this case, if we are to use the k-Trailing Walks Algorithm, observe that each thread will flip from
being good to bad if only a single one of it’s edge probes is noisy. Thus, even for small values of α
(such as if α−1 ∈ Ω(n)), our algorithm will quickly degenerate as nearly all threads become bad.
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A natural question to ask then is can we simply probe random vertices? In other words, a
natural algorithm is to pick a vertex vi uniformly at random, probe all adjacent edges, and assign
our hypothesis for vi to be the value that makes the most sense given our observations – meaning the
value that disagrees with less than half of the edge observations. The problem with this algorithm
is the same problem that we discussed in the noiseless case. The probability of incorrectly not
fixing a bad vertex is the probability that more than half the neighbors of the probed vertex are
bad conditioned on the fact that we have probed a bad vertex. Now if the errors are distributed
uniformly at random, this value is easily bounded. But since we are more likely to make an error if
we are around other errors, as time goes on this conditional probability becomes larger and larger,
since errors begin to cluster. This result is unacceptable, and makes the algorithm impossible to
analyze.

The second issue is the problem of connected components of errors. If there is a large connected
component of errors, then we can only fix it by probing on the boundary. In the grid example, for
instance, a connected component of errors can only be fixed if we probe on its boundary, which can
have size proportional to the square root of the number of errors!

3.2 Primer on Expander Graphs

The algorithm presented in this section will make heavy use of bounds on the size of the spectral
gap of our graph. The smaller the spectral gap, the more probes we will need to obtain reasonable
bounds. Graphs with large or constant-sized spectral gaps are known as expanders. We assume
some familiarity with spectral theory, and will present now the fundamentals that will be employed
in the analysis of our algorithm.

Definition 4. Given a graph G and any subset S ⊂ G, define the boundary ∂S of S to be the set
∂S = {(u, v) ∈ E(G) | u ∈ S, v ∈ G \ S}. We then define the edge expansion, or Cheeger Constant,
h(G) of G as:

h(G) = min
0<|S|≤ |G|2

|∂S|
|S|

Definition 5. We say that a graph G with n vertices is an expander graph if h(G) ∈ Ω(1).

Definition 6. Given a d-regular graph G with adjacency matrix A, order the eigenvalues of A
λ1 ≥ λ2 ≥ · · · ≥ λn. Then the spectral gap of G is defined to be d− λ2.

Lemma 11. A d-regular graph G is an expander if and only if it’s spectral gap is a constant.

Proof. The proof follows from the well known Cheeger Inequality, which states:

1
2(d− λ2) ≤ h(G) ≤

√
2d(d− λ2)

Thus (d− λ2) ∈ Ω(h(G)), and h(G) ∈ Ω(d− λ2), which completes the claim. �

The following theorem will be crucial to our analysis in section 3.4.
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Theorem 12 (Expander Walk Sampling 25). Let G be a graph with normalized second largest
eigenvalue λ2. Let f : V (G)→ {0, 1} be any function, and let µ = 1

n

∑
vi∈V (G) f(vi) be its mean. If

Y0, Y1, . . . , Yk′ is a k′-step random walk starting at a random vertex Y0, then we have for all γ > 0:

Pr
[ 1
k′

k′∑
i=0

f(Yi)− µ > γ
]
≤ e−

γ2(1−λ2)k′
10 = p

and

Pr
[ 1
k′

k′∑
i=0

f(Yi)− µ < −γ
]
≤ e−

γ2(1−λ2)k′
10

Example 1. The 4-regular discrete torus (i.e. the Cayley Graph of the finite group Zn × Zn) with
n2 vertices has spectral gap (1− λ2) ∈ O( 1

n) = O( 1√
|Zn×Zn|

).

Example 2. The (n− 1)-regular complete graph Kn on n vertices has spectral gap ((n− 1)− λ2) ∈
O( 1

n)

3.3 Expander Walks Algorithm

In Section 3.1 we remarked that in order to reliably fix errors in the noisy model we cannot rely on
ever being very sure of the correctness of our hypothesis for a given vertex at any time step. This is
a direct result of a non-trivial probability of noise on every probe. Thus, we must somehow obtain a
uniform sample of the vertices in the graph of a sufficiently large size such that with high probability
at least half of such vertices are not errors. This is a necessarily condition in order to update our
hypothesis correctly, since even in a non-noisy sample the set of vertices observed in any set of
probes may still take on one of two possible sets of values. Even to enforce this, such a sequence of
probes must be made in path in order to relate the values of successive vertices together. But by
the very nature of a path, the vertices on it are forced to be close to each other, and therefore not
uniformly chosen! Thus we must take a longer path if we want the vertices on it to be, on average,
uniformly distributed. Luckily, there are classes of graphs for which it suffices to take logarithmically
long paths to obtain such a result. The property of the graph which will determine how long such a
path must be in order to be uniform is known as the expansion of the graph. Before we introduce
this notion, we will first present out algorithm.

Definition 7. At time step t, let εt be the fraction of bad vertices (errors) in the graph. In other
words, at time t there are nε vertices vi such that vi,t 6= ht(vi).

Our algorithm uses k = k′r probes on every time step, where k′ will be the length of each
random path sampled and r will be the number of such paths sampled on each time step.

Expander Walk Sampling Algorithm:

1. On each time step, for j = 1, 2, . . . , r:

2. Pick a random vertex vi, and take a k′ step random walk starting from vi, proving each edge
along the way.
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3. Let ~Y = Y0, Y1, . . . , Yk′ be the (not necessarily unique) vertices on the walk. Assuming that all
edge probes are correct, assign ht(~Y ) to be the value (out of the two possible) which minimizes
the `1 distance from our prior hypothesis ht−1(~Y ).

Algorithm 3 Expander Walk Sampling
Input: r, k′, G

1: Initialize paths P1, . . . , Pr = ∅
2: for j = 1, 2, . . . , r do
3: Uniformly sample v1,j ←−

U
V (G).

4: for i = 2, . . . , k′ do
5: vi,j ←−

U
N(Vi−1,j)

6: end for
7: Pj ← {v1,j , v2,j , . . . , vk,j}
8: end for
Output: P1, P2, . . . , Pr

Algorithm 4 Expander Hypothesis Update (time t)
Input: Paths P1, P2, . . . , Pr and hypothesis ht−1(G)

1: ht ← ht−1
2: for i ∈ {1, 2, . . . , r} do
3: Probe all edges Ei ∈ Pi
4: Let I1, I2 be the valid assignments to Pi given Ei.
5: ht(Pi)← arg minI∈{I0,I1} ‖ht−1(Pi)− I‖11
6: end for
Output: ht(G)

The above algorithm uses k = rk′ probes per time step. Suppose we have a d-regular graph
G with normalized second largest eigenvalue λ2. We will show that if G is a good expander then
k′ ∈ O( log(n)

(1−λ2)) is sufficient to obtain an expected number of errors E[nεt] ≤ n
2r (1− α)−k, and that

nεt is highly concentrated around it’s mean for t ∈ O(n2).

3.4 Main Analysis

In the following two sections we will conduct the principle analysis of our algorithm that will justify
our main theorems, Theorem 17 and Theorem 21. First we prove two simple technical Lemmas.
Afterwards, we introduce Lemma 15, which will allow us in the analysis that follows to assume
that at every time step we have fewer than εt ≤ 1/4 errors in the graph with high probability.
Using similar techniques as in this Lemma, we prove a bound on the number of errors made by our
algorithm for polynomially many time steps in Theorem 17.
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Afterwards, we consider looser bounds in the case that we allow fewer probes. In Theorem
18, we will prove that the expected number of errors of our algorithm at any time step before
T = n2 is at most n

r (1− αk′)−1. Using this fact, we will then observe that if we have more than
this expected number of errors, then in expectation the number of errors will decrease on the next
time step. Technically, this means that the number of errors we have exceeding this expected value
is a supermartingale. Using this fact, we apply Azuma’s inequality for supermartingales to obtain
our main Theorems: Theorem 20 and Theorem 21.

Lemma 13. Suppose we have 0 − 1 random variables x1, . . . , xn that are not i.i.d. but Pr[xi =
1|X] ≤ p where X is any set of observations of the values xj’s not including xi. Then we can apply
the standard Chernoff bounds, using Pr[xi = 1] = p, to bound the probability that

∑
xi is large.

Proof. We prove Pr(
∑
t∈T ′ xt > c) ≤ Pr(

∑
t∈T ′ Yt > c) where Yi are Bernoulli(p). But this is easy to

see, since Pr(
∑
t∈T ′ xt > c) =

∑
|I|≥c Pr[xi = 1, ∀i ∈ I] ≤

∑
|I|≥c p

|I|(1− p|I|) = Pr(
∑
t∈T ′ Yt > c),

which completes the claim.
�

Lemma 14. With probability at least 1− 1
nc , nature never flips more than 4(c+ q) log(n) at any

time before T = nq.

Proof. Let Et be the number of vertices flipped by nature at time t. Note that E1, . . . , ET are
independent with expectation 1

2 . Then by Chernoff bounds, using δ = 6(c+ q) log(n):

Pr
[
Et ≥

1
2(1 + 6(c+ q) log(n))

]
≤ e−(c+q) log(n) = 1

nc+q

Since each ET are independent, and since 1
2(1 + 6(c+ q) log(n)) < 4(c+ q) log(n), it follows via the

union bound that with probability at least 1− 1
nc the maximum, taken over all t ≤ T = nq, number

of vertices that nature flips in a given time step is less 4(c+ q) log(n).
�

Lemma 15. Given k′ ≥ 2560(c+ q) log(n)
(1−λ2) probes in every random walk, and assuming α < 1

240k′

and k′ ∈ o( n
log(n)), then with probability at least (1− 2

nc ) at no time before T = nq will we ever have
more than an εt = 1

4 fraction of errors.

Proof. First note that via Lemma 14 bounds the probability that nature flips more than 4(c +
q) log(n)) vertices at any time step before T = nq is at most 1

nc which is a bound we will now use.
Supposing εt = 1/8, we will bound the probability that we obtain n

4 errors before dropping
below n

8 . Now we have picked our k′ large enough so that by Theorem 25, the probability that we
see more than εt + 1/16th errors on our path is at most 1

nc . Similarly, the probability that we see
less than εt − 1

16 -th errors is at most 1
nc . Thus the probability that neither of these occur on any

one path is at least 1− 2
nc . Thus with probability at least 1− 2

nc , since k
′ ≥ 2560(c+ q) log(n)

(1−λ2) , if
there is no noise and if t ∈ T ′, then we fix at least

1
16k

′ − 4(c+ q) log(n) = 160(c+ q) log(n)
(1− λ2) − 4(c+ q) log(n) > 156(c+ q) log(n)

(1− λ2) ≥
k′

20
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errors after probing any one path. For any path where we fix at least this many errors, we call
such a path a successful path. Note that we have subtracted off the maximum number of errors that
nature can create on any time step (conditioned on the fact that it never makes more). Thus if we
sample multiple paths on any time step we are subtracting nature’s error quantity multiple times
within a given time step, making our bound slightly worse, but nevertheless sufficient. Observe that
after an unsuccessful path there can be at most k′ + 7(c+ q) log(n) ≤ 2k′ new errors, thus at most
40 successful paths fully removes the errors from one unsuccessful path. This fact will be shortly
useful.

Now using the union bound, the probability that there is no noise on a path is at least (1−k′α). So
we fix at least k′

20 many errors with a path sample with probability at least (1− 2
nc )(1−k′α) ≥ (1−2k′α)

(assuming (1− 2
nc ) > (1− k′α), which if did not hold would only give a tighter analysis), and create

at most 2k′ errors with probability at most 2k′α. Thus, starting at any time t, we fix 2k′ errors
before any unsuccessful path with probability at least (1− 80k′α). Now divide the range (0, n) into
intervals of size 2k′, and set

Xt =
{
Xt−1 + 1 if the number of errors goes up one interval since the last change in interval
Xt−1 − 1 if the number of errors goes down one interval since the last change in interval

Note that we can never skip an interval in one time step since they have size 2k′. Then Xt is a bias
random walk with descent probability at least (1− 80k′α), since by the union bound this is a lower
bound on the probability that we have 40 successful paths in a row.

Now suppose at time t we have n
8 errors. Then it would take at the very least n

8
1

2k′ = n
16k′

increases in intervals before we could attain n
4 many errors, in other words when Xt hits n

16k′ .
Applying Lemma 24, if we start with X0 = 0, then the probability that Xt hits n

16k′ before −1 is
at most

( 80αk′
1−80αk′

) n
16k′ . Since α < 1

240k′ by assumption, the probability that we hit n
4 errors before

decreasing below n
8 is at least (1

2)
n

16k′ , so the probability that this never happens before time T = nq,
where there are rnq path samples, is at most nqr(1

2)
n

16k′ . Conditioned on the fact that nature
never makes too many errors on one time step before nq (which we showed occurs with probability
≥ 1 − 1

nc ), and given rnq
(1

2
) n

16k′ < 1
2nc which holds as long as k′ ∈ o( n

log(n)), it follows that the
probability that we never exceed n

4 errors is at least (1− rnq
(1

2
) n

16k′ )(1− 1
nc ) ≥ (1− 2

nc ), which is
the desired bound.

�

Here, utilizing similar techniques as in Lemma 15, we prove a reliable error bound for our
algorithm. This error bound holds for much more general distributions, where all we require is a
high probability bound on the number for flips made at any time step. In the subsequent section we
will present a stronger bound for the i.i.d. case which holds for a much smaller time horizon which
works for smaller α, such as α−1 ∈ Ω(k2). The bound we present in this section holds for a much
longer time horizon.

Theorem 16. Suppose vertices flip according to any distribution D such that the nature never flips
more than ζD ≤ k vertices at any time step before nq with probability at least 1− 1

nc . Then given
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k = k′ ≥ 2560(c+ q) log(n)
(1−λ2) probes in every random walk, setting the parameter r = 1, and assuming

α ≤ 1
60(k′) and k′ ∈ o( n

log(n)), then with probability at least (1− 5
nc )(1−nq2−M ) the maximum number

of errors that the Expander Sampling algorithm encounters before time T = nq, running on a graph
where vertices flip according to D, is at most n

(√10(c+q) log(n)
(1−λ2)k′ + 12αk′ + ζD

k′
)

+ 2Mk′.

Proof. First apply Lemma 15 to condition on the fact that we never have more than εt ≤ 1/4
errors, which occurs with probability at least 1− 2

nc . The proof will proceed much as in the proof of
Lemma 15. Again, for any path where there is no noise, call such a path a successful path. Using
the notation of Theorem 25, suppose that we have a εt ≥ µ =

√
10c log(n)
(1−λ2)k′ + ζD+12α(k′)2

k′ fraction of
errors at time t, and let Y0, . . . , Yk′ be the vertices on the random path sampled by our algorithm.
Let f(Yi) a binary function evaluating to 1 if and only if f(Yi) is an error, and 0 otherwise. Note
that since by assumption we have α ≤ 1

60(k′) , it follows that εt < 1/4, so we are not violating the
assumption obtained by conditioning on Lemma 15 to begin with. By Theorem 25 we have

Pr
[ k′∑
i=0

f(Yi) < ζD + 12α(k′)2
]
≤ Pr

[ 1
k′

k′∑
i=0

f(Yi)− εt < −
√

10c log(n)
(1− λ2)k′

]
≤ 1
nc

Now utilizing the lower bound on k′ we establish a similar bound:

Pr[ 1
k′

k′∑
i=0

f(Yi)− εt >
1
4] ≤ 1

nc

The above is a upper bound on the probability that we incorrectly assign our hypothesis for the
vertices on a successful path, since this occurs only if 1

k′
∑k′
i=0 f(Yi) > 1/2, and we know εt < 1/4.

Thus we have established the following fact: with probability at least 1 − 2
nc we fix at least

ζD + 12α(k′)2 errors if we have 1/4 > εt ≥
√

10c log(n)
(1−λ2)k′ + ζD+12α(k′)2

k′ and there is no noise on the

path. Since with probability at least 1− 1
nc nature never creates more than ζD errors on any time

step before nq, it follows that with probability at least 1− 3
nc the net decrease in errors is at least

12α(k′)2 after every successful path probe when εt ∈
(√10c log(n)

(1−λ2)k′ + ζD+12α(k′)2

k′ , 1/4
)
.

Now we proceed as in the proof of Lemma 15. First break the interval (0, n) up into sub-intervals
of size 2k′, and let

Xt =
{
Xt−1 + 1 if the number of errors goes up one interval since last change in interval
Xt−1 − 1 if the number of errors goes down one interval since last change in interval

Now note that (k′ + ζD) ≤ 2k′ is an upper bound on the difference between errors on subsequent
time steps, thus it is impossible to skip over intervals within one time step. Furthermore note that
it less than 2k′

12α(k′)2 = 1
6αk′ successful paths to go from one interval to the one below it. Then if

we have εt ∈
(√10c log(n)

(1−λ2)k′ + ζD+12α(k′)2

k′ , 1/4
)
we know that the probability that Xt = Xt−1 − 1 is at
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least (1− k′

nc )(1− α(k′) 1
6αk′ ) ≥ (1− 2α(k′) 1

6αk′ ) ≥ 2/3. Thus Xt is a random walk with probability
of descent at least 2/3. Thus applying Lemma 24 with p ≤ 1/3, supposing at time t we have nµ
errors, then it follows that with probability at least (1− (1

2)M ) we decrease the number of errors
below nµ before reaching nµ+ 2Mk′ many errors. Thus, using the union bound, it follows that with
probability at least (1− nq2−M ) we never reach nµ+Mk′ = n

(√10c log(n)
(1−λ2)k′ + ζD

k′ + 12αk′
)

+ 2Mk′

many errors before time nq. Incorporating the (1− 3
nc ) probability lower bound of fixing at least 1

net error on any successful path and the (1− 2
nc ) lower bound from Lemma 15 yields the desired

result.
�

Theorem 17. Suppose vertices flip i.i.d. with probability 1
2n . Then given k = k′ ≥ 2560(c+q) log(n)

(1−λ2)
probes per time step, and assuming α ≤ 1

60(k′) and k′ ∈ o( n
log(n)), with probability at least (1− 6

nc ),
the maximum number of errors that the Expander Sampling algorithm encounters before time T = nq

is at most n
(√20(c+q) log(n)

(1−λ2)k′ + 12αk′
)

+ 2(q + c+ 1) log(n)k′.

Proof. The proof follows directly from Theorem 16, setting ζD = 4(c+ q) log(n) < k as per Lemma
14, and setting M = (q + c+ 1) log(n), and noting then that:

n
(√10(c+ q) log(n)

(1− λ2)k′ + 12αk′ + ζD
k′
)

+ 2Mk′.

= n
(√10(c+ q) log(n)

(1− λ2)k′ + 12αk′ + 4(c+ q) log(n)
k′

)
+ 2(q + c+ 1) log(n)k

≤ n
(√20(c+ q) log(n)

(1− λ2)k′ + 12αk′
)

+ 2(q + c+ 1) log(n)k′

�

3.5 Further Analysis

We now explore a different set of bounds which will are stronger (given sufficiency small values of
α), but will hold only to at most quadratically many time steps. Furthermore, we place a bound on
the expected number of errors our algorithm has at a given time step. The main technique we will
utilize in this section is Azuma’s inequality for supermartingales. In order to reach this point, we
first establish an upper bound on the expected number of errors of our algorithm at any given time
step.

Theorem 18. Assume α−1 > 2(k′)2r. Then conditioned on the fact that εt < 1/4 for all t ≤ T = n2,
the Exapnder Walks Sample algorithm which uses at least k′ ≥ 160 c log(n)

(1−λ2) probes on any one path
has expected number of errors E[εtn] ≤ n

r (1− αk′)−1 for all t ≤ T .
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Proof. We utilize Theorem 25 to prove the claim. We first analyze the performance of our algorithm
if we probe a full path with no noise. Now if there is no noise in any of our probes, then our
algorithm correctly assigns all vertices in ~Y = 〈Y0, Y1, . . . , Yk′〉 if no more than half of the vertices in
~Y are bad at time t. Otherwise, we incorrectly assigns all vertices in ~Y . So define the function f(vi)
in the Theorem 25 to take on the value 0 if vi is good at time t and 1 if vi is bad at time t (recall vi
is bad at time t if ht(vi) 6= vi,t). We have µ = εt by definition. Now assuming there is no noise, we
only make an error if more than half of the vertices on our path are errors. Furthermore, by Lemma
15, we will never have more than εt = 1/4 with high probability. So setting γ = 1

4 in Theorem 25
gives an upper bound on probability that we make an error in our assignment of any path (given
that there was no noise on that path). Then taking at least k′ = 160 c log(n)

(1−λ2) gives p ≤ 1
nc , where p is

as in Theorem 25. Thus the probability that we make an error on a noiseless path is at most 1
nc .

Now we consider the number of vertices that we fix given that we do not make an error. Since
Y0 is random, if we probe r paths we will expect to fix at least rεt errors at time t if we do not make
an error and there is no noise on the path. If there is noise on the path, however, then we can be
wrong on all of the vertices. Using the union bound, the probability that there is noise on any one
path is at most αk′. So let us compute the expected number of errors we contribute or remove at
time t. Thus an upper bound for the expected number of errors we add or remove on a given time
step is:

−(1− 1
nc

)rεt(1− αk′) + (αk′)k + 1
nc
k

Now nature in expectation adds 1/2 errors per time step. Thus, in order to determine the ratio of
errors εt such that in expectation we neither gain nor lose errors on the next time step, we must
solve the following equation:

E
[
εt+1n− εtn | εtn

]
= −(1− 1

nc
)rεt(1− αk′) + (αk′)k − 1

nc
k − 1/2 = 0

for εt, which will give the fixed point. This fixed point will be the expected number of errors
E[nεt] at any time step of the algorithm, as the value will be a sink towards which all other states
of the system evolve towards. Then taking εt = 1

2r(1− 1
nc

)(1 − αk′)−1(1 + (αk′)k + k
nc ) suffices

to solve the equation. Thus we conclude E[nεt] ≤ n 1
2r(1− 1

nc
)(1 − αk′)−1(1 + (αk′)k + k

nc ). Now

we have (1 − 1
nc )
−1(1 + (αk′)k + k

nc ) ≤ 2, which occurs because α−1 > 2(k′)2r, thus we have
E[nεt] ≤ n

r (1− αk′)−1 as desired. �

Lemma 19. Conditioned on the fact that εt < 1/4 for all t ≤ T , then the random variable
max{εtn,E[εt]} is a supermartingale for t = 1, 2, . . . , T .

Proof. Consider the following expectation from the last theorem, which holds conditioned on the
fact that εtn < 1/4 for all t ≤ T ,:

E
[
εt+1n− εtn | εtn

]
= −(1− 1

nc
)rεt(1− αk′) + (αk′)k − 1

nc
k − 1/2 = 0

It follows directly that if εt is increased then this expectation is decreased. Thus E[εt+1n|εtn] ≤ εtn,
which is the desired property.

�
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We have now concluded conclude that εt, when restricted to the interval (E[εt], 1/4) is a
supermartingale. Formally we have shown that the random variable min{max{εt,E[εt]}, 1/4} is
a supermartingale. This motivates the following analysis. We will bound the probability that
εt becomes too much larger than the expected number of total errors. We will first bound the
probability that nature makes too many errors in any step. Then by the chain rule for probability,
the probability that we never have too many errors is then the probability that we never have too
many errors conditioned on the fact that εt never exceeds 1/4 and nature never makes too many
errors in any step, times the probability that nature never makes too many errors on any step times
the probability that εt never exceeds 1/4 (the last two events are independent).

Definition 8. We say that a vertex vi is an error at time t if ht(vi) 6= vi,t. We say that an error vi
at time t is an error due to nature if there exists a τ ≤ t such that hτ (vi) = vi,τ , nature flipped vi
on time τ + 1, and ht′(vi) = hτ (vi) for all τ ≤ t′ ≤ t. We say that vi is an error due to us if it is an
error that is not due to nature.

Remark 6. Recall from our lower bound, Theorem 1, for any algorithm that probes k edges on any
time step we have E[εtn] ≥ n

k . Thus the following bounds hold up to time T ≥ n2

k4 .

Theorem 20. Assume α−1 > 2(k′)2r. Then at any fixed time t ≤ T = (E[εtn]
k )2, using k =

k′r ≥ 2560rc log(n)
(1−λ2) probes, with probability at least (1 − 3

nc ), the above algorithm has less than
n

r(1−αk′)
(
1 +

√
8c log(n)

)
errors.

Proof. By the law of total probability, the desired probability is at least the probability that
εt ≤ n

r(1−αk′)
(
1 +

√
8c log(n)

)
conditioned on the fact that εt < 1/4 for all t < T , times the

probability that εt < 1/4 for all t < T (See Lemma 15, where we show that this latter probability is
at leat 1− 1

nc ).
So let Xt = max{εtn,E[εtn]}. Then Xt is a supermartingale by Theorem 19. Note that we can

never create or remove more than k errors on any time step, since we change the values of at most
k vertices in our hypothesis. To show that nature cannot create too many errors, we must now
bound the probability that nature never creates too many errors and then condition on this fact.
By Lemma 14, we have that nature never creates more than 7(c+1)(1−λ2)

2560rc k ≤ k errors at any time
before T with probability at least 1− 1

nc . Conditioning on this fact, we have the bounded difference
|Xt −Xt−1| ≤ 2k for all 1 ≤ t ≤ T (at most k from us and k from nature). Then for any time step
T , by applying Azuma’s inequality for supermartingales we obtain:

Pr
[
XT −X0 > λ

]
≤ exp

( −λ2

2(2k)2T

)
Setting λ =

√
8T (k)2c log(n) for any c ≥ 1 gives

Pr
[
XT > E[εtn] +

√
8Tc(k)2 log(n)

]
≤ 1
nc

Setting T = (E[εtn]
k )2 gives

Pr
[
XT > E[εtn] + E[εtn]

√
8c log(n)

]
≤ 1
nc
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Using our upper bound on the expectation E[εtn] ≤ n
r(1−αk′) derived in Theorem 18, we obtain:

Pr
[
XT ≥

n

r(1− αk′)
(
1 +

√
2c log(n)

)]
≤ Pr

[
XT > E[εtn]

(
1 +

√
2c log(n)

)]
≤ 1
nc

Which is the desired result. Note that we conditioned on the fact that εt ≤ 1/4 for all t ≤ T ,
and the fact that nature never creates too many errors for any t ≤ T , both of which hold with
probability at least (1− 1

nc ). Multiplying all three of these lower bounds gives the desired lower
bound (1− 1

nc )3 ≥ (1− 3
nc )

�

Theorem 21. Let G be any graph with spectral gap (1 − λ2). Fix any integers r, c ≥ 1, and let
k = k′r ≥ 2560rc log(n)

(1−λ2) be the number of probes we allow our algorithm per time step. Further
assume that the edge noise satisfies α−1 > 2(k′)2r. Then with probability at least (1 − 1

nc−2 ), the
maximum number of errors that the (k′, r)-Expander Walk Algorithm accumulates at any time before
T is less than n

r(1−αk′)
(
1 +

√
8c log(n)

)
, where T = (E[εtn]

k )2

Proof. By Theorem 20 the probability that error bound is exceeded at any one time step t is at
most 1

nc . Using the union bound, along with the fact that T ≤ n2, it follows that the probability of
the error bound ever being exceeded is at most 1

nc−2 as desired.
�

3.6 Recovering from high errors

In the prior section we derived error bounds which hold with high probability. Unfortunate, our
theoretical bounds do not extend past quadratic T ≥ n2 time steps. Thus, we proceed in our
stochastic analysis by deriving the expected return time to the expected number of errors given that
we have exceeded it. In other words, conditioned on the fact that at time t we have a εt = ME[εt]
fraction of errors, we place an upper bound on the difference t′ − t such that E[ε′t] ≤ 2E[εt].

Lemma 22. Assume α−1 > 2(k′)2r. Suppose at time t there are εt = 2ME[εt] errors for M ≥ 2.
Then the expected number of time steps until εt = ME[εt] is at most 4nr (1− αk′)−1

Proof. Let E ≥ E[εt] be the solution to the below equation.

−
[
(1− 1

nc
)2rE(1− αk′)− αk′k − 1

nc
k
]

+ 1/2 = 0

Recall that this is the expected number of changes in errors for any εt < 1/4. First note that the
bracketed portion of the above expectation is linear in E . Thus doubling E doubles the expected the
number we fix on any time step (and does not effect the expected number of errors nature adds). In
general, if we have ME errors, then we expect the total number of errors to decrease by M/2− 1/2
on the next time step. Let Xt be the expected change in total errors from time step (t− 1) to t.
Thus if εt ≥ME[εt], then we have E[Xt] ≤ −1

2(M − 1). Now while the Xi’s are not independent,
regardless of the realization of {Xj}j<i, we still have E[Xt] ≤ −1

2(M − 1) given that the barrier
εt = ME[εt] has not yet been hit (and under the consistent εt ≤ 1/4 assumption of this entire section
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given by Lemma 15). So in order to fix the nME[εt] required errors, we need T large enough so
that −E[

∑T
i=1Xi] = nME[εt]. Since −E[

∑T
i=1Xi] ≥ T

2 (M − 1), after setting T
2 (M − 1) = nME[εt]

the it follows that at most

T ≤ nME[εt]
2

M − 1 ≤ 4nE[εt] ≤ 4n
r

(1− αk′)−1

steps are required in expectation, where the last inequality holds following Theorem 18, which is
the desired result. �

Theorem 23. Assume α−1 > 2(k′)2r. Suppose at time t there are εt = ME[εt] errors for M ≥ 1.
Then the expected number of time steps until εt = 2E[εt] is at most log(M)4nr (1− αk′)−1

Proof. Let τ be the total time taken, and let τ(a, b) be the number of time steps between the first
time εt ≤ aE[εt] until the first time εt ≤ bE[εt]. Then τ =

∑log(M)−1
i=0 τ(M2i ,

M
2i+1 ), and the result

follows immediately from linearity of expectation and repeated application of Lemma 22. �

3.7 Discussion

What we have shown is that with the addition of noise α, the problem becomes feasible on graphs
with good expansion. The particular results of this paper have shown that given fixed noise α
and fixed expansion (1 − λ2), the range of probe values k for which our bounds hold with high
probability is 7680r log(n)

(1−λ2) ≤ k ≤ α−1

k′ . This follows by taking c = 3 in Theorem 21. This gives a
range of the possible number of probes that we could use on a given graph with fixed noise while
still obtaining the theoretical bound prove in the prior section.

The intuition for why better theoretical bounds for larger values of α are not possible is due to
the fact that, when we have on the order of O(n/r) errors, we can only say that we expect to fix at
most 1 error on any given successful path, whereas an unsuccessful path will yield k′ new errors.
Since a path is unsuccessful with probability αk′, it must be the case that α−1 is at least (k′)2 in
order to yield any sort of equilibrium. To obtain the desired O(n/r) bound, we need to add an
additional factor of r, namely requiring that α−1 ≥ (k′)2r = kk′. As we will see in the experimental
section, however, this condition is almost certainly not necessary in practice, and α−1 as small as
2k suffices to acceptable results on the order of nk mean errors.

4 Experiments
Now our bounds for the performance of the expander walk algorithm are understandably not as tight
as those we derived for the noiseless case. Furthermore, it is difficult to get a precisely handle on
the statistical properties of the stochastic process that is the number of errors. Thus, we simulated
the expander walk algorithm on randomly generated d-regular expander graphs. In each case, the
spectral gap of the graph was roughly 1/5, coinciding with the 5-regularity and definition of spectral
expansion, and therefore was constant with respect to increasing n. The techniques used to generate
the random expanders were fairly straightforward, using results of random spectral graph theory
which roughly guarantee than randomly generated Erdos-Renyi graphs will be good expanders.
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Restricting to d-regularity was accomplished by selective dropout of edges, followed by a careful
reintoduction. The results are detailed below.

Figure 1: Expander Walk algorithm simulated for different noise and probe parameters

Parameters Max Error Min Error Mean Median Variance (σ2)
k = 10, α = 1/k2 72 4 26.6204 26 60.5892
k = 50, α = 1/k2 54 0 4.9799 3 36.2155
k = 50, α = 1/100 212 22 104.6569 103 594.3254

The above figure shows the performance of our algorithm on varying probing-noise ratios. In each
case we only ran one path per time step, as we found increasing the number of paths sampled on a
time step did not substantially effect the error rate as opposed to simply increasing k. First note
that the probe-error tradeoffs observed are closer to the n

k expected number of errors rather than the
upper bounds derived in this paper. Also note when keeping the noise constant α = 1

100 , increasing
the number of probes from k = 10 to k = 50 results in roughly a 5 fold decrease on the mean error
rate. This further suggests the linear probe-error tradeoff derived in the prior analysis.

Below we provide the results of two further experiments for larger expanders graphs with
n = 10, 000 vertices. The first of which we vary the number of probes taken and consider noise
that varies in 1

k2 . In the last set of experiments we fix the number of probes at k = 50 and vary
the noise. Note that even in the case that α = 1

2k , the performance of our algorithm still does not
substantially degenerate.
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Figure 2: Simulating the Expander Walk algorithm on varying values of k, where the noise scales
inverse quadratically with k.

Figure 3: Simulating the Expander Walk algorithm with constant k = 50 probes per time step and
varying amounts of noise.
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5 Appendix

Lemma 24 (Bias Gambler’s Ruin). Let X0, X1, . . . be a bias random walk with probability p of
increasing by 1 and probability 1− p of decreasing by 1. Let Pn be the probability that the random
walk starting at X0 = n hits the value T = n+m before it hits 0. Then

Pn ≤
( p

1− p
)m

Proof. The Lemma is well known, and a more detailed proof can be found in Leighton and
Rubinfeld’s lecture notes [5]. The sketch is as follows. By definition of Pn we obtain the recursion
Pn = pPn+1 + (1−p)Pn−1. This is a linear homogenous recurrence with boundary conditions PT = 1
and P0 = 0. Solving the recurrence one obtains

Pn =

(
1−p
p

)n
− 1(

1−p
p

)T
− 1
≤

(
1−p
p

)n
(

1−p
p

)T =
( p

1− p
)m

as desired. �

Theorem 25 (Expander Walk Sampling). Let G be a graph with normalized second largest eigenvalue
λ2. Let f : V (G) → {0, 1} be any function, and let µ = 1

n

∑
vi∈V (G) f(vi) be its mean. If

Y0, Y1, . . . , Yk′ is a k′-step random walk starting at a random vertex Y0, then we have for all γ > 0:

Pr
[ 1
k′

k′∑
i=0

f(Yi)− µ > γ
]
≤ e−

γ2(1−λ2)k′
10 = p

and

Pr
[ 1
k′

k′∑
i=0

f(Yi)− µ < −γ
]
≤ e−

γ2(1−λ2)k′
10

Proof. The theorem, up to improved constants, is well known. A detailed proof can be found in
[4]. �
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