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Nearest Neighbors

- a data structure problem

* Preprocessing:

e dataset of points in a metric
space

* Query:

* new point, find closest dataset
point
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* Prepare all answers, constant °
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e for finite metric

Best of both worlds?




Set Parameters and Priorities

7. number of dataset points

« Metric space: (R%, ¢5) — generalize later
w(logn) < d < n°W
* Priorities:
* Fast query time
* Polynomial space

* Preprocessing time



Nearest Neighbors in one dimension

- binary search

Sorted dataset

* Divide-and-Conquer

e preprocessing time O(nlogn) ° n/2 points

e space O(n)

(n/2)+1

 query time O(logn) T(n)<T
= O(logn)



Nearest Neighbors in higher dimension
[Clarkson ’88, Meiser ’93]

* Query time: O(d°logn)

. Space: O(n®*°) forany 5> 0

» Geometric complexity of Voronoi
Diagram: ©(n!/21)




Nearest Neighbors in higher dimension
[Clarkson ’88, Meiser ’93]

* Query time: O(d°logn)

. Space: O(n®*°) forany 5> 0

» Geometric complexity of Voronoi
Diagram: ©(n!/21)

Does there exist a poly-space sublinear query D.S?




Nearest Neighbors in higher dimension

A strong negative answer

* Fine-grained complexity

« [Williams ’05], [Ahle, Pagh, Razenshteyn, Silvestri ’16]

 Theorem: a data structure for nearest neighbor search with

1. poly(nd) preprocessing time
2. poly(d) -n'~¢ query time

disproves SETH.



Approximate Nearest Neighbors

More space-efficient for (1 + ¢)-approximations

e [Arya, Mount, Netanyahu, Silverman, Wu ’94], [Clarkson '94], [Kleinberg '97]
[Kushilevitz, Ostrovsky, Rabani 98, Indyk, Motwani ‘98]

. Space: @D = n - (d/e)%D = n . (1/€)°W

. Query Time: (1/¢)°@ logn — poly(d,logn)
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Approximate Nearest Neighbors

More space-efficient for (1 + ¢)-approximations

[Arya, Mount, Netanyahu, Silverman, Wu ’94], [Clarkson '94], [Kleinberg '97],
[Kushilevitz, Ostrovsky, Rabani 98, Indyk, Motwani ‘98]

space: n°Y = n-(d/e)° D s n.(1/6)°W 5 p. n01/e?)

Query Time: (1/¢)°@ logn — poly(d,logn)

Accurate approx., log-query time, large space

What makes dependence exponential? [Clarkson ’99], [Karger, Ruhl ’02],
[Krauthgamer, Lee ’04], ... etc, survey [Clarkson ’05]
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Approximate Nearest Neighbors

More space-efficient for (1 + ¢)-approximations

* Imagine sublinear algorithm

 find point p . °

e convince yourself no closer
point - could intersect 24 o
boxes

 Theorem [Rubinstein ‘2018]: a data structure for (1 + €)-approx nn with:
. poly(nd) preprocessing time and poly(d) - n*~°) query time
disproves SETH.
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« “Randomized algorithms” perspective - [Indyk, Motwani ’98]
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Approximate Nearest Neighbors via LSH

Sublinear algorithms, better space

« “Randomized algorithms” perspective - [Indyk, Motwani ’98]

0.1

- Large constant approx., n”-' -query time, n'-'-space + preprocessing

 High Level Idea:

 Randomized hashing experiment, produces subset of dataset, return nn.
 Why correct? Unlikely that significantly closer nn not in subset.

« Why fast? Using approx. promise, limit the size of subset.



Approximate Nearest Neighbor

single-scale version of the problem

» Preprocess dataset with scale » > 0
and approx. ¢ > 1.

* Query q.
° o
« Promise Jp:|p—qll2 <,
+ Prfoutput g — plls < er] > 13 .

e As soon as find ||¢ — p||2 < cr, return.



LSH: Randomized Space Partitions

what you need for randomized divide-and-conquer

e Hash family H is (r,cr,p1, p2)-sensitive:

* forany [z —gllz=r, Pt [h(z)=h(g)]=p

« forany |z —qllz>cr,  Pr [h(y)=h(q)] <p
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what you need for randomized divide-and-conquer

e Hash family H is (r,cr,p1, p2)-sensitive:

* forany flz—gqlz=<r, Prh(z)=h(g]=p x‘l z
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LSH: Randomized Space Partitions

what you need for randomized divide-and-conquer

e Hash family H is (r,cr,p1, p2)-sensitive:
 forany o —ql><r, Pr h(z) =h(g) > p

« forany |z —qllz>cr,  Pr [h(y)=h(q)] <p

 Randomized Divide-and-Conquer:

1
T(n) < —
P1

Z2

o log(1/p1)

P~ log(1/p2)

1 logl/p2 n
. (]_ + T(n . p2)) — <_> — nlog(l/pl)/log(l/pQ) ——a

<1



LSH: Randomized Space Partitions

what you need for randomized divide-and-conquer

e Hash family H is (r,cr,p1, p2)-sensitive:

* forany [z —gllz=r, Pt [h(z)=h(g)]=p

« forany |z —qllz>cr,  Pr [h(y)=h(q)] <p

 Randomized Divide-and-Conquer:

1 1 logl/p2 n
T(n) < - (14 T(n - pa)) = (—) _ plos(1/p1)/108(1/p2) _ o

P1

1 logl/p2 n
S(n) <n- (—) =nttr
P1

rr q

Z2

_log(1/p1)

P~ log(1/p2)

<1



LSH: Randomized Space Partitions

what you need for randomized divide-and-conquer

e Hash family H is (r,cr,p1, p2)-sensitive:

* forany [z —gll<r,  Pr [h(z) =h(q)] = p .~ o .l
« forany [z —qllz = cr,  Pr [h(y)=h(g)] < p v v
« Ex. (R',/;): random shifted interval of
width W
_ o [z —q| log(1/p1) _ log(1—r/W) — —r/W _ 1
h]ig-[ [h(z) = h(q)] = min {1 W 0 log(1/ps)  log(1—ecr/W) — —er/W ¢



LSH: Randomized Space Partitions

what you need for randomized divide-and-conquer

« Hash family H is (r, cr, p1, p2)-sensitive: Quantity to optimize
* forany |z —qfl2 <r, L [h(z) = h(q)] = p1 _ log(1/p1)
+ forany |lz—glz>cr,  Pr [h(y)=h(g)] <p: log(1/p2)

* Upper bounds:

Indyk-Motwani ’98]: p = 1/c¢ forall (R% ¢,),p € [1,2]

Datar-Immorlica-Indyk-Mirrokni '04]: p < 1/c for (R%,¢5)

Andoni-Indyk '06]: p = 1/c¢” + 04(1) for (R%,4,),p € [1, 2]



LSH: Randomized Space Partitions

what you need for randomized divide-and-conquer

* Lower bounds: Quantity to optimize
. . — et/" —1 1
e [Motwani-Naor-Panigrahy ’06]: p > e 1 2 . log(1/p1)
e [O’Donnell-Wu-Zhou ’'09]: p > cip — 04(1) log(1/p2)

* Upper bounds:
e [Indyk-Motwani '98]: p = 1/c forall (R%¢,),p € [1,2]

« [Datar-Immorlica-Indyk-Mirrokni *04]: p < 1/c for (R%,¢5)

 [Andoni-Indyk ’06]: p = 1/c” 4+ 04(1) for (R%, £,),p € [1,2]



LSH: Randomized Space Partitions

what you need for randomized divide-and-conquer

* Lower bounds: Quantity to optimize
. . , el/e” — 1 1
e [Motwani-Naor-Panigrahy ’06]: p > e 11 o , log(1/p1)
+ [0’Donnell-Wu-Zhou "09]: p> - — oa(1) log(1/p2)
 Upper bounds:
* [Indyk-Motwani ’98]: p = 1/c¢ for all (R%¢,),p € [1,2] Ex.: ¢=10

+ [Datar-Immorlica-Indyk-Mirrokni *04]: p < 1/c for (R, ¢;) | Query time: 7!

14-0.01

 [Andoni-Indyk ’06]: p = 1/c? 4+ 04(1) for (R%,¢,),p € [1,2] Space: n




LSH: Randomized Space Partitions

next steps and subsequent questions

» Las Vegas LSH Algorithms:
« Guarantee correctness, running time in expectation.
« [Pagh ’16], [Ahle ’17], [Wei ‘19]

* Time-space tradeoffs:
» Use more space, faster query time

» [Kapralov ’15], [Becker-Ducas-Gama-Laarhoven ’16], [Christiani ’17], [Andoni-
Razenshteyn-Laarhoven-Waingarten ’17]

* Practical LSH Algorithms: [Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt '15,
Aumuller, Christiani, Pagh, Vesterli ’19]



The Landscape so Far...

Exact, Accurate-approx, Constant-approx

Exact Algs (1 + €)-approx C-approx

n®@ space, o dn'TP space,

. (1 space,
d°M logn time n-(1/e) P dn® time
poly(d,logn) time

or, linear scan p— 0asc— oo




Beyond LSH?

or is that all there is.

+ LSH Recursion: T(n) < — - (1+ T(psn))
b1

» possible tradeoffs between pi1 vs. pa run into Ibs.

e [O’Donnell-Wu-Zhou ’09] instances are very structured (contain dense region)
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 Idea: During preprocessing, identify special structure + adapt to it!
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Beyond LSH?

or is that all there is.

LSH Recursion: T(n) < — - (1 + T(psn))
b1

» possible tradeoffs between pi1 vs. pa run into Ibs.

e [O’Donnell-Wu-Zhou ’09] instances are very structured (contain dense region)

[Andoni-Indyk-Nguyen-Razenshteyn *14]: p < 7/(8¢%)

1
[Andoni-Razenshteyn *15]: p < 1/(2¢* — 1) 2 92 _1

for unstructured instance.

— >
For d =w(logn), p=> 52 1



The Twist on LSH

what can one ‘adapt’ to.

 LSH Recursion: T'(n) <

i1 - (14T (p2n))
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amplifying success prb
for unknown query.




The Twist on LSH . .
size of recursive dataset

 LSH Recursion: T (n) < — - (1+ T(p2n))
amplifying success prb
for unknown query.

what can one ‘adapt’ to. /
1
1

 Data-Dependent LSH:

. PgeRest |z —qls < Pr [h(z) = h(q)] >
Forany z € P,gc R s.t [z —ql]2 <, hN%QP)[ (z) = h(q)] = p1

wl,:}c%wp hNHI&p)[ (2) (1)]| < p2
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Finding Structure in Arbitrary Datasets

the “data-dependent” approach

 Dense Ball-or-LSH. Up to factor-2, easiest structure to handle is a dense ball.
-l
« Thm [Andoni-Naor-Nikolov-Razenshteyn-Waingarten *18]: For all P c (R% 4;),
|-l O(logd/e?)
* Either there is an £;-ball of radius -Opte - r with half of the points.

* Or, there is an LSH for approx. -&¢p#e>- with log(1/p1)/log(1/p2) < €.
~Ottogdfed)-  90(Viogdlog(1/e))

* No Dense Ball —p Sparse cuts of potential query-nn pairs.
A poly(d)-time oracle

« [Kush-Nikolov-Tang ’21]: efficient preprocessing for (Rd, ¢,,) via average-distortion



Finding Structure in Arbitrary Datasets

the “data-dependent” approach

 Dense Ball-or-Decompose. [Indyk '00]

« Thm: Forany P c (R%,¢..), either there is an ¢.-ball of radius O(loglogd)/e - r, or



Finding Structure in Arbitrary Datasets

the “data-dependent” approach

 Dense Ball-or-Decompose. [Indyk '00]

« Thm: Forany P c (R%,¢..), either there is an ¢.-ball of radius O(loglogd)/e - r, or

dk € [d]

AN\

LUM MUR




Finding Structure in Arbitrary Datasets

the “data-dependent” approach

 Dense Ball-or-Decompose. [Indyk '00]

« Thm: Forany P c (R%,¢..), either there is an ¢.-ball of radius O(loglogd)/e - r, or

dk € [d]

AN\

LUM MUR

L ' M ' R

Query time: T'(n) < 14+T((1 —1/d)n) Space: S(n) < S(LUM) +S(MUR) <n'te
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« Random decomposition s.t. (i) overlap is small, and (ii) split query-nn rarely.
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Finding Structure in Arbitrary Datasets

the “data-dependent” approach

 Dense Projected-Ball or Decompose. [Andoni-Nikolov-Razenshteyn-Waingarten *21]

« Thm: For any P c (R%,¢,), either:
« 3 coord. projection to R**?? with dense £,-ball of radius O(logp-log'/?d/e), or

« Random decomposition s.t. (i) overlap is small, and (ii) split query-nn rarely.

Query time:

i. T(n,d) <T(n,0.01d) + T'(n/2,d) Olp/e) ~ Ollogp - 1og™" 4/
— O(logp/e)

nn p
i. T'(n,d) <n [Andoni, Shekel-Nosatzki *25]



Other aspects...

Approximate nearest neighbors for ...

« Earth-Mover’s Distance [Andoni-Indyk-Krauthgamer *08, Jayaram-Waingarten-Zhang '24]

o Edit Distance [Ostrovsky-Rabani '05, Andoni-ShekelNosatzki ’25]

° Symmetric NOrms [Andoni-Nikolov-Nguyen-Razenshteyn-Waingarten ’17]

Geometric Spanners in high-dimension [HarPeled-Indyk-Sidropolous’13, Andoni-Zhang’23]

Kernel Density Estimation [Charikar-Kapralov-Nouri-Siminelakis 20, Backurs-Charikar-Indyk-
Siminelakis ’18]

Privacy and Fairness in Nearest Neighbors [Aumuller-HarPeled-Mahabadi-Pagh-Silvestri 22,
Andoni-Indyk-Mahabadi-Narayanan ‘23]
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Approximate nearest neighbors for ...

« Earth-Mover’s Distance [Andoni-Indyk-Krauthgamer *08, Jayaram-Waingarten-Zhang '24]

o Edit Distance [Ostrovsky-Rabani '05, Andoni-ShekelNosatzki ’25]

° Symmetric NOrms [Andoni-Nikolov-Nguyen-Razenshteyn-Waingarten ’17]

Geometric Spanners in high-dimension [HarPeled-Indyk-Sidropolous’13, Andoni-Zhang’23]

Kernel Density Estimation [Charikar-Kapralov-Nouri-Siminelakis 20, Backurs-Charikar-Indyk-
Siminelakis ’18]

Privacy and Fairness in Nearest Neighbors [Aumuller-HarPeled-Mahabadi-Pagh-Silvestri 22,
Andoni-Indyk-Mahabadi-Narayanan ‘23]

Thanks!




