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Transformers & Attention

Each token = query, key, value embeddings (q, k, v) ∈ Rd

Attention between (q, k, v) and (q1, k1, v1), . . . , (qn, kn, vn) :

Attn(q;K,V ) := Ei∼Softmaxvi

where Pr[Softmax = i] ∝ exp
(
〈ki,q〉√

d

)



Problem: memory scales with context length

Because of attention, Transformers require memory

Ω(n · d)

n – number of processed tokens, d – dimension of embeddings

Problem

Reduce the memory without sacrificing attention

Approaches:

I Quantization: MiKV [Yang et al., 2024], WKVQuant
[Yue et al., 2024]

I Token pruning: SnapKV [Li et al., 2024], H20
[Zhang et al., 2024]
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LongBench [Bai et al., 2023] tests understanding of a long
context (7K words)

Example question: What is the primary conclusion Alice draws?

1. Adaptive heating always fails in real homes

2. User behavior is irrelevant to energy savings

3. . . .

SnapKV [Li et al., 2024], H20 [Zhang et al., 2024]: take context
tokens with largest attention to question



Token pruning: limitations of prior work

Goal

Design a question independent token eviction policy with
provable guarantees and strong empirical performance

I Prior algorithms are question-dependent

I Prior algorithms are purely heuristic
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I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments



Reminder: formula for attention

Attn(q;K,V ) :=
exp

(
〈k1,q〉√

d

)
v1 + . . .+ exp

(
〈kn,q〉√

d

)
vn

exp
(
〈k1,q〉√

d

)
+ . . .+ exp

(
〈kn,q〉√

d

)



Problem setting

At a given moment, the key-value cache

K = (k1, . . . , kn), V = (v1, . . . , vn)

compress it by a factor of 2

K1 ⊂ K, V1 ⊂ V ; K2 ⊂ K

so that for any fixed q

Attn(q;K,V ) ≈ Est1(q;K1, V1)

Est2(q;K2)



Naive approach: uniform sampling

Est1(q;K1, V1) :=
∑

(k,v)∈(K1,V1)

2 exp

(
〈k, q〉√
d

)
v, K1, V1 ∼ Unif(K,V )

Est2(q;K2) :=
∑
k∈K2

2 exp

(
〈k, q〉√
d

)
, K2 ∼ Unif(K)

Does not use the geometric properties of the vectors. Can
do better!
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Denominator approximation

Est2(q;K2) :=
∑
k∈K2

2 exp

(
〈k, q〉√
d

)

Observation

Finding a good K2

Est2(q;K2) ≈
∑n

i=1 exp
(
〈ki,q〉√

d

)
is equivalent to finding σ : [n]→ {+,−}∑n

i=1 σ(i) · exp
(
〈ki,q〉√

d

)
≈ 0

Phillips-Tai’20, Charikar-K.-Waingarten’24
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Vector Balancing Problem

Our goal

Given vectors {ki}i∈[n], find σ : [n]→ {+,−}

n∑
i=1

σ(i) · exp

(
〈ki, q〉√

d

)
≈ 0 for any fixed q

Vector Balancing Problem:

Given vectors {ui}i∈[n], find σ : [n]→ {+,−}:〈
n∑
i=1

σ(i)ui, z

〉
≈ 0 for any fixed z
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Vector Balancing Problem

Fact

There exists a mapping φ such that for every k, q ∈ Rd:

〈φ(k), φ(q)〉 = exp

(
〈k, q〉√
d

)



Algorithm for the Vector Balancing Problem

Need ∣∣∣∣∣
〈

n∑
i=1

σ(i)ui, z

〉∣∣∣∣∣ ≤ something small

What is “something small”? What if z is known?
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If z is known

Keep all prefixes balanced? That is∣∣∣∣∣
j∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

for all j ≤ n?

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i)∑

i σ(i)〈ui, z〉
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Banaszczyk’s Theorem

Corollary of Banaszczyk’s Theorem

For any u1, . . . , un, ‖ui‖2 ≤ 1, there exists a distribution
P : {+,−}n → [0, 1] such that for any z, ‖z‖2 = 1:

Pr
σ∼P

[∣∣∣∣∣
〈

n∑
i=1

σ(i)ui, z

〉∣∣∣∣∣ ≤ O(log(n))

]
≥ 1− 1

n100

There is a simple algorithm for sampling from P !
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Self-Balancing Walk: algorithm for VBP

1: input: vectors u1, . . . , un, parameter (normalizer) α

2: for j from 1 to n

3: wj =
∑

i<j σ(i)ui

4: pj = 1
2 − α · 〈wj , uj〉

5: σ(j) =

+, with probability pj

−, with probability 1− pj .
6: output: σ

Alweiss-Liu-Sawhney’21



Self-Balancing Walk: applied to denominator

1: input: vectors k1, . . . , kn, parameter (normalizer) α

2: for j from 1 to n do

3: pj = 1
2 − α ·

∑
i<j σ(i) exp

(
〈ki,kj〉√

d

)
4: σ(j) =

+, with probability pj

−, with probability 1− pj .
5: end for

6: output: σ
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Attn(q;K,V ) =
exp

(
〈k1,q〉√

d

)
v1 + . . .+ exp

(
〈kn,q〉√

d

)
vn

exp
(
〈k1,q〉√

d

)
+ . . .+ exp

(
〈kn,q〉√

d

)



Numerator approximation

Need

Find σ : [n]→ {+,−}

n∑
i=1

σ(i) · exp

(
〈ki, q〉√

d

)
vi ≈ 0 for any fixed q

Is this a vector balancing problem instance? Yes!
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Embedding construction

Fact

There exists a mapping φ such that for every k, q ∈ Rd:

〈φ(k), φ(q)〉 = exp

(
〈k, q〉√
d

)

Define ψ:
ψ(k, v) := φ(k)⊗ v

where ⊗ is the tensor product
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Self-Balancing Walk: applied to numerator

1: input: pairs of vectors (k1, v1), . . . , (kn, vn), parameter

(normalizer) α

2: for j from 1 to n do

3: pj = 1
2 − α ·

∑
i<j σ(i) exp

(
〈ki,kj〉√

d

)
〈vi, vj〉

4: σ(j) =

+, with probability pj

−, with probability 1− pj .
5: end for

6: output: σ



Formal Problem Statement

Formal problem statement

Minimize K1, V1,K2 so that for any q:∥∥∥∥Attn(q;K,V )− Est1(q;K1, V1)

Est2(q;K2)

∥∥∥∥
2

≤ ε·‖softmax
(
KT · q

)
‖2·‖V ‖F .

where

[softmax
(
KT · q

)
]j :=

exp
(
〈kj ,q〉√

d

)
∑n

i=1 exp
(
〈ki,q〉√

d

)



Theoretical Guarantees

Uniform sampling:

≈ d

ε2
poly(log(n))

BalanceKV:

≈ d1.5

ε
poly(log(n))

Is this optimal?
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Streaming Attention Approximation Space
Complexity

Lower bound

Any ε-approximation algorithm has space complexity

≈ Ω

(
min

{
1

ε2
, d

})

Reduction from INDEX

Attention between (q, k, v) and (q1, k1, v1), . . . , (qn, kn, vn) :

Attn(q;K,V ) := Ei∼Softmaxvi

where Pr[Softmax = i] ∝ exp
(
〈ki,q〉√
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Models

Llama-3.1-8B-Instruct Qwen-2.5-14B/32B-Instruct



Single layer attention approximation
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Benchmarks

LongBench [Bai et al., 2023]

I Tests understanding of a
long context (7K words)

Example question: What is the
primary conclusion Alice draws?

1. Adaptive heating always fails
in real homes

2. User behavior is irrelevant to
energy savings

3. . . .

Needle-In-A-Haystack
[Kamradt, 2023]

I Tests the ability to preserve
surprising information in a
context of 4K − 100K
tokens

I Example context: an essay
with inserted “The 5 best
things to do in San
Francisco are: . . . ”

I Example question: “What
are the 5 best things to do
in San Franscisco?”



End-to-end Evalution on LongBench

Context+question compression by a factor of 4

Method Qwen2.5-32B Qwen2.5-14B Llama-3.1-8B

Exact (Baseline) 51.77 54.14 50.17
StreamingLLM 35.52 38.71 39.79
PyramidKV 47.13 49.80 45.64
SnapKV 48.77 50.22 46.12
Uniform 48.76 49.88 46.38
BalanceKV 48.84 50.62 46.77

Metrics: F1, Rouge-L, Accuracy, Edit Distance



Needle-In-A-Haystack

Context+question compression by a factor of 4

Heuristic: pick out the most “surprising” tokens and compress the
rest

Method Average Accuracy

SnapKV 0.83
PyramidKV 0.90
StreamingLLM 0.31
Uniform Sampling 0.90
BalanceKV 0.99



Future directions

I Tight bounds? Perhaps via data-dependent LSH?

I Learned algorithms for discrepancy minimization?

I Applying discrepancy to feedforward layers?

Theory Practice

SGD for convex functions SGD for neural networks

Discrepancy-based methods ???

Questions?
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