

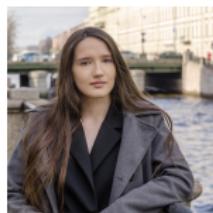
Streaming Attention Approximation via Discrepancy Theory

Michael Kapralov

EPFL

Collaborators

Ekaterina Kochetkova
EPFL



Kshiteej Sheth
EPFL

Insu Han
KAIST

Amir Zandieh
Google AI

NeurIPS'25 (spotlight), Available at: arXiv:2502.07861

Transformers & Attention

Each token = query, key, value embeddings $(q, k, v) \in \mathbb{R}^d$

Attention between (q, k, v) and $(q_1, k_1, v_1), \dots, (q_n, k_n, v_n)$:

$$\text{Attn}(q; K, V) := \mathbb{E}_{i \sim \text{Softmax}} v_i$$

where $\Pr[\text{Softmax} = i] \propto \exp\left(\frac{\langle k_i, q \rangle}{\sqrt{d}}\right)$

Problem: memory scales with context length

Because of attention, Transformers require memory

$$\Omega(n \cdot d)$$

n – number of processed tokens, d – dimension of embeddings

Problem: memory scales with context length

Because of attention, Transformers require memory

$$\Omega(n \cdot d)$$

n – number of processed tokens, d – dimension of embeddings

Problem

Reduce the memory without sacrificing attention

Problem: memory scales with context length

Because of attention, Transformers require memory

$$\Omega(n \cdot d)$$

n – number of processed tokens, d – dimension of embeddings

Problem

Reduce the memory without sacrificing attention

Approaches:

- ▶ Quantization: MiKV [Yang et al., 2024], WKVQuant [Yue et al., 2024]
- ▶ **Token pruning**: SnapKV [Li et al., 2024], H20 [Zhang et al., 2024]

LongBench [Bai et al., 2023] tests understanding of a long context ($7K$ words)

Example question: What is the primary conclusion Alice draws?

1. Adaptive heating always fails in real homes
2. User behavior is irrelevant to energy savings
3. ...

SnapKV [Li et al., 2024], H20 [Zhang et al., 2024]: take context tokens with largest attention to question

Token pruning: limitations of prior work

Goal

Design a **question independent** token eviction policy with provable guarantees and strong empirical performance

Token pruning: limitations of prior work

Goal

Design a **question independent** token eviction policy with provable guarantees and strong empirical performance

- ▶ Prior algorithms are **question-dependent**
- ▶ Prior algorithms are purely heuristic

► Theory

1. Approximation of the denominator
2. Approximation of the numerator

► Experiments

Reminder: formula for attention

$$\text{Attn}(q; K, V) := \frac{\exp\left(\frac{\langle k_1, q \rangle}{\sqrt{d}}\right) v_1 + \dots + \exp\left(\frac{\langle k_n, q \rangle}{\sqrt{d}}\right) v_n}{\exp\left(\frac{\langle k_1, q \rangle}{\sqrt{d}}\right) + \dots + \exp\left(\frac{\langle k_n, q \rangle}{\sqrt{d}}\right)}$$

Problem setting

At a given moment, the key-value cache

$$K = (k_1, \dots, k_n), \quad V = (v_1, \dots, v_n)$$

compress it by a factor of 2

$$K_1 \subset K, \quad V_1 \subset V; \quad K_2 \subset K$$

so that for any fixed q

$$\text{Attn}(q; K, V) \approx \frac{\text{EST}_1(q; K_1, V_1)}{\text{EST}_2(q; K_2)}$$

Naive approach: uniform sampling

$$\text{EST}_1(q; K_1, V_1) := \sum_{(k, v) \in (K_1, V_1)} 2 \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right) v, \quad K_1, V_1 \sim \text{Unif}(K, V)$$

$$\text{EST}_2(q; K_2) := \sum_{k \in K_2} 2 \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right), \quad K_2 \sim \text{Unif}(K)$$

Naive approach: uniform sampling

$$\text{EST}_1(q; K_1, V_1) := \sum_{(k,v) \in (K_1, V_1)} 2 \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right) v, \quad K_1, V_1 \sim \text{Unif}(K, V)$$

$$\text{EST}_2(q; K_2) := \sum_{k \in K_2} 2 \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right), \quad K_2 \sim \text{Unif}(K)$$

Does not use the geometric properties of the vectors.

Naive approach: uniform sampling

$$\text{EST}_1(q; K_1, V_1) := \sum_{(k,v) \in (K_1, V_1)} 2 \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right) v, \quad K_1, V_1 \sim \text{Unif}(K, V)$$

$$\text{EST}_2(q; K_2) := \sum_{k \in K_2} 2 \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right), \quad K_2 \sim \text{Unif}(K)$$

Does not use the geometric properties of the vectors. Can do better!

► Theory

1. Approximation of the denominator
2. Approximation of the numerator

► Experiments

- ▶ Theory
 - 1. Approximation of the denominator
 - 2. Approximation of the numerator
- ▶ Experiments

Denominator approximation

$$\text{EST}_2(q; K_2) := \sum_{k \in K_2} 2 \exp \left(\frac{\langle k, q \rangle}{\sqrt{d}} \right)$$

Denominator approximation

$$\text{EST}_2(q; K_2) := \sum_{k \in K_2} 2 \exp \left(\frac{\langle k, q \rangle}{\sqrt{d}} \right)$$

Observation

Finding a good K_2

$$\text{EST}_2(q; K_2) \approx \sum_{i=1}^n \exp \left(\frac{\langle k_i, q \rangle}{\sqrt{d}} \right)$$

is equivalent to finding $\sigma : [n] \rightarrow \{+, -\}$

$$\sum_{i=1}^n \sigma(i) \cdot \exp \left(\frac{\langle k_i, q \rangle}{\sqrt{d}} \right) \approx 0$$

Phillips-Tai'20, Charikar-K.-Waingarten'24

Vector Balancing Problem

Our goal

Given vectors $\{k_i\}_{i \in [n]}$, find $\sigma : [n] \rightarrow \{+, -\}$

$$\sum_{i=1}^n \sigma(i) \cdot \exp\left(\frac{\langle k_i, q \rangle}{\sqrt{d}}\right) \approx 0 \text{ for any fixed } q$$

Vector Balancing Problem

Our goal

Given vectors $\{k_i\}_{i \in [n]}$, find $\sigma : [n] \rightarrow \{+, -\}$

$$\sum_{i=1}^n \sigma(i) \cdot \exp\left(\frac{\langle k_i, q \rangle}{\sqrt{d}}\right) \approx 0 \text{ for any fixed } q$$

Vector Balancing Problem:

Given vectors $\{u_i\}_{i \in [n]}$, find $\sigma : [n] \rightarrow \{+, -\}$:

$$\left\langle \sum_{i=1}^n \sigma(i) u_i, z \right\rangle \approx 0 \text{ for any fixed } z$$

Vector Balancing Problem

Fact

There exists a mapping ϕ such that for every $k, q \in \mathbb{R}^d$:

$$\langle \phi(k), \phi(q) \rangle = \exp \left(\frac{\langle k, q \rangle}{\sqrt{d}} \right)$$

Algorithm for the Vector Balancing Problem

Need

$$\left| \left\langle \sum_{i=1}^n \sigma(i)u_i, z \right\rangle \right| \leq \text{something small}$$

Algorithm for the Vector Balancing Problem

Need

$$\left| \left\langle \sum_{i=1}^n \sigma(i)u_i, z \right\rangle \right| \leq \text{something small}$$

What is “something small”?

Algorithm for the Vector Balancing Problem

Need

$$\left| \left\langle \sum_{i=1}^n \sigma(i)u_i, z \right\rangle \right| \leq \text{something small}$$

What is “something small”? What if z is known?

If z is known

Keep all prefixes balanced? That is

$$\left| \sum_{i=1}^j \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

for all $j \leq n$?

If z is known

Keep all prefixes balanced? That is

$$\left| \sum_{i=1}^j \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

for all $j \leq n$?

	u_1	u_2	u_3	u_4	u_5
$\langle u_i, z \rangle$	0.1	0.8	0.5	0.7	0.3
signs $\sigma(i)$					
$\sum_i \sigma(i) \langle u_i, z \rangle$					

If z is known

Need

$$\left| \sum_{i=1}^j \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

for all $j \leq n$

	u_1	u_2	u_3	u_4	u_5
$\langle u_i, z \rangle$	0.1	0.8	0.5	0.7	0.3
signs $\sigma(i)$	+				
$\sum_i \sigma(i) \langle u_i, z \rangle$	0.1				

If z is known

Need

$$\left| \sum_{i=1}^j \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

for all $j \leq n$

	u_1	u_2	u_3	u_4	u_5
$\langle u_i, z \rangle$	0.1	0.8	0.5	0.7	0.3
signs $\sigma(i)$	+	-			
$\sum_i \sigma(i) \langle u_i, z \rangle$	0.1	-0.7			

What if z is known?

Need

$$\left| \sum_{i=1}^j \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

for all $j \leq n$

	u_1	u_2	u_3	u_4	u_5
$\langle u_i, z \rangle$	0.1	0.8	0.5	0.7	0.3
signs $\sigma(i)$	+	-	+		
$\sum_i \sigma(i) \langle u_i, z \rangle$	0.1	-0.7	-0.2		

What if z is known?

Need

$$\left| \sum_{i=1}^j \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

for all $j \leq n$

	u_1	u_2	u_3	u_4	u_5
$\langle u_i, z \rangle$	0.1	0.8	0.5	0.7	0.3
signs $\sigma(i)$	+	-	+	+	
$\sum_i \sigma(i) \langle u_i, z \rangle$	0.1	-0.7	-0.2	0.5	

What if z is known?

Need

$$\left| \sum_{i=1}^n \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

	u_1	u_2	u_3	u_4	u_5
$\langle u_i, z \rangle$	0.1	0.8	0.5	0.7	0.3
signs $\sigma(i)$	+	-	+	+	-
$\sum_i \sigma(i) \langle u_i, z \rangle$	0.1	-0.7	-0.2	0.5	0.2

What if z is known?

Need

$$\left| \sum_{i=1}^n \sigma(i) \langle u_i, z \rangle \right| \leq \text{something small}$$

	u_1	u_2	u_3	u_4	u_5
$\langle u_i, z \rangle$	0.1	0.8	0.5	0.7	0.3
signs $\sigma(i)$	+	-	+	+	-
$\sum_i \sigma(i) \langle u_i, z \rangle$	0.1	-0.7	-0.2	0.5	0.2

Proposition

If $|\langle u_i, z \rangle| \leq 1$ for all i then $\left| \sum_{i=1}^j \sigma(i) \langle u_i, z \rangle \right| \leq 1$ for all $j \leq n$

Banaszczyk's Theorem

Corollary of Banaszczyk's Theorem

For any u_1, \dots, u_n , $\|u_i\|_2 \leq 1$, there exists a distribution $P : \{+, -\}^n \rightarrow [0, 1]$ such that for any z , $\|z\|_2 = 1$:

$$\Pr_{\sigma \sim P} \left[\left| \left\langle \sum_{i=1}^n \sigma(i)u_i, z \right\rangle \right| \leq O(\log(n)) \right] \geq 1 - \frac{1}{n^{100}}$$

Banaszczyk's Theorem

Corollary of Banaszczyk's Theorem

For any u_1, \dots, u_n , $\|u_i\|_2 \leq 1$, there exists a distribution $P : \{+, -\}^n \rightarrow [0, 1]$ such that for any z , $\|z\|_2 = 1$:

$$\Pr_{\sigma \sim P} \left[\left| \left\langle \sum_{i=1}^n \sigma(i)u_i, z \right\rangle \right| \leq O(\log(n)) \right] \geq 1 - \frac{1}{n^{100}}$$

There is a simple algorithm for sampling from P !

Self-Balancing Walk: algorithm for VBP

- 1: **input:** vectors u_1, \dots, u_n , parameter (normalizer) α
- 2: **for** j from 1 to n
 - 3: $w_j = \sum_{i < j} \sigma(i)u_i$
 - 4: $p_j = \frac{1}{2} - \alpha \cdot \langle w_j, u_j \rangle$
 - 5: $\sigma(j) = \begin{cases} +, & \text{with probability } p_j \\ -, & \text{with probability } 1 - p_j. \end{cases}$
- 6: **output:** σ

Alweiss-Liu-Sawhney'21

Self-Balancing Walk: applied to denominator

```
1: input: vectors  $k_1, \dots, k_n$ , parameter (normalizer)  $\alpha$ 
2: for  $j$  from 1 to  $n$  do
3:    $p_j = \frac{1}{2} - \alpha \cdot \sum_{i < j} \sigma(i) \exp\left(\frac{\langle k_i, k_j \rangle}{\sqrt{d}}\right)$ 
4:    $\sigma(j) = \begin{cases} +, & \text{with probability } p_j \\ -, & \text{with probability } 1 - p_j. \end{cases}$ 
5: end for
6: output:  $\sigma$ 
```

► Theory

1. Approximation of the denominator
2. Approximation of the numerator

► Experiments

► Theory

1. Approximation of the denominator
2. Approximation of the numerator

► Experiments

$$\text{Attn}(q; K, V) = \frac{\exp\left(\frac{\langle k_1, q \rangle}{\sqrt{d}}\right) v_1 + \ldots + \exp\left(\frac{\langle k_n, q \rangle}{\sqrt{d}}\right) v_n}{\exp\left(\frac{\langle k_1, q \rangle}{\sqrt{d}}\right) + \ldots + \exp\left(\frac{\langle k_n, q \rangle}{\sqrt{d}}\right)}$$

Numerator approximation

Need

Find $\sigma : [n] \rightarrow \{+, -\}$

$$\sum_{i=1}^n \sigma(i) \cdot \exp\left(\frac{\langle k_i, q \rangle}{\sqrt{d}}\right) v_i \approx 0 \text{ for any fixed } q$$

Numerator approximation

Need

Find $\sigma : [n] \rightarrow \{+, -\}$

$$\sum_{i=1}^n \sigma(i) \cdot \exp\left(\frac{\langle k_i, q \rangle}{\sqrt{d}}\right) v_i \approx 0 \text{ for any fixed } q$$

Is this a vector balancing problem instance?

Numerator approximation

Need

Find $\sigma : [n] \rightarrow \{+, -\}$

$$\sum_{i=1}^n \sigma(i) \cdot \exp\left(\frac{\langle k_i, q \rangle}{\sqrt{d}}\right) v_i \approx 0 \text{ for any fixed } q$$

Is this a vector balancing problem instance? Yes!

Embedding construction

Fact

There exists a mapping ϕ such that for every $k, q \in \mathbb{R}^d$:

$$\langle \phi(k), \phi(q) \rangle = \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right)$$

Embedding construction

Fact

There exists a mapping ϕ such that for every $k, q \in \mathbb{R}^d$:

$$\langle \phi(k), \phi(q) \rangle = \exp\left(\frac{\langle k, q \rangle}{\sqrt{d}}\right)$$

Define ψ :

$$\psi(k, v) := \phi(k) \otimes v$$

where \otimes is the tensor product

Self-Balancing Walk: applied to numerator

- 1: **input:** pairs of vectors $(k_1, v_1), \dots, (k_n, v_n)$, parameter
(normalizer) α
- 2: **for** j from 1 to n **do**
- 3:
$$p_j = \frac{1}{2} - \alpha \cdot \sum_{i < j} \sigma(i) \exp\left(\frac{\langle k_i, k_j \rangle}{\sqrt{d}}\right) \langle v_i, v_j \rangle$$
- 4:
$$\sigma(j) = \begin{cases} +, & \text{with probability } p_j \\ -, & \text{with probability } 1 - p_j. \end{cases}$$
- 5: **end for**
- 6: **output:** σ

Formal Problem Statement

Formal problem statement

Minimize K_1, V_1, K_2 so that for any q :

$$\left\| \text{Attn}(q; K, V) - \frac{\text{EST}_1(q; K_1, V_1)}{\text{EST}_2(q; K_2)} \right\|_2 \leq \varepsilon \cdot \|\text{softmax}(K^T \cdot q)\|_2 \cdot \|V\|_F.$$

where

$$[\text{softmax}(K^T \cdot q)]_j := \frac{\exp\left(\frac{\langle k_j, q \rangle}{\sqrt{d}}\right)}{\sum_{i=1}^n \exp\left(\frac{\langle k_i, q \rangle}{\sqrt{d}}\right)}$$

Theoretical Guarantees

Uniform sampling:

$$\approx \frac{d}{\varepsilon^2} \text{poly}(\log(n))$$

Theoretical Guarantees

Uniform sampling:

$$\approx \frac{d}{\varepsilon^2} \text{poly}(\log(n))$$

BalanceKV:

$$\approx \frac{d^{1.5}}{\varepsilon} \text{poly}(\log(n))$$

Is this optimal?

Streaming Attention Approximation Space Complexity

Lower bound

Any ε -approximation algorithm has space complexity

$$\approx \Omega \left(\min \left\{ \frac{1}{\varepsilon^2}, d \right\} \right)$$

Reduction from INDEX

Streaming Attention Approximation Space Complexity

Lower bound

Any ε -approximation algorithm has space complexity

$$\approx \Omega \left(\min \left\{ \frac{1}{\varepsilon^2}, d \right\} \right)$$

Reduction from INDEX

Attention between (q, k, v) and $(q_1, k_1, v_1), \dots, (q_n, k_n, v_n)$:

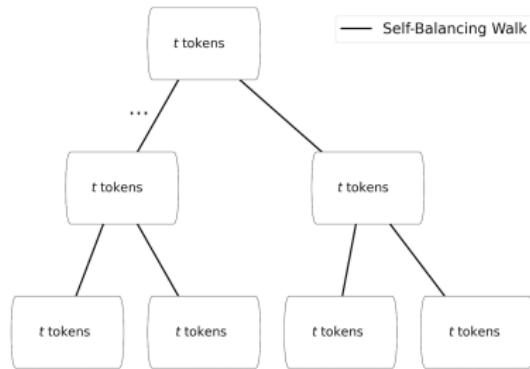
$$\text{Attn}(q; K, V) := \mathbb{E}_{i \sim \text{Softmax}} v_i$$

$$\text{where } \Pr[\text{Softmax} = i] \propto \exp \left(\frac{\langle k_i, q \rangle}{\sqrt{d}} \right)$$

Streaming?

Streaming?

Streamable by merge and reduce



► Theory

1. Approximation of the denominator
2. Approximation of the numerator

► Experiments

► Theory

1. Approximation of the denominator
2. Approximation of the numerator

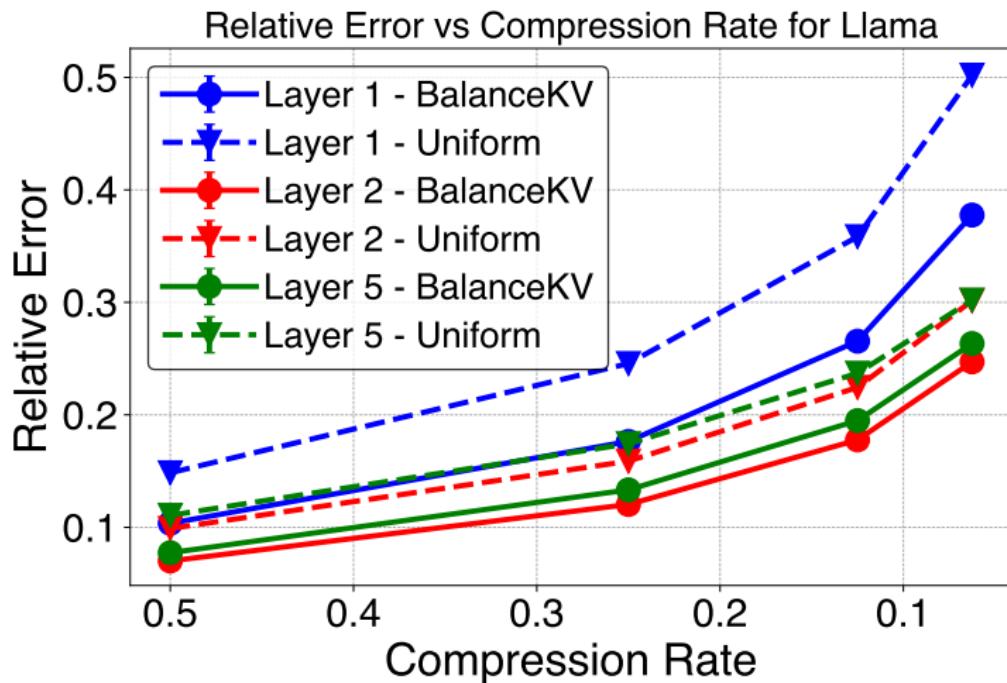
► Experiments

Models

Llama-3.1-8B-Instruct

Qwen-2.5-14B/32B-Instruct

Single layer attention approximation



Benchmarks

LongBench [Bai et al., 2023]

- ▶ Tests understanding of a long context ($7K$ words)

Example question: What is the primary conclusion Alice draws?

1. Adaptive heating always fails in real homes
2. User behavior is irrelevant to energy savings
3. ...

Needle-In-A-Haystack [Kamradt, 2023]

- ▶ Tests the ability to preserve surprising information in a context of $4K - 100K$ tokens
- ▶ **Example context:** an essay with inserted “The 5 best things to do in San Francisco are: ...”
- ▶ **Example question:** “What are the 5 best things to do in San Francisco?”

End-to-end Evaluation on LongBench

Context+question compression by a factor of 4

Method	Qwen2.5-32B	Qwen2.5-14B	Llama-3.1-8B
Exact (Baseline)	51.77	54.14	50.17
StreamingLLM	35.52	38.71	39.79
PyramidKV	47.13	49.80	45.64
SnapKV	48.77	50.22	46.12
Uniform	48.76	49.88	46.38
BALANCEKV	48.84	50.62	46.77

Metrics: F1, Rouge-L, Accuracy, Edit Distance

Needle-In-A-Haystack

Context+question compression by a factor of 4

Heuristic: pick out the most “surprising” tokens and compress the rest

Method	Average Accuracy
SnapKV	0.83
PyramidKV	0.90
StreamingLLM	0.31
Uniform Sampling	0.90
BALANCEKV	0.99

Future directions

- ▶ Tight bounds? Perhaps via data-dependent LSH?

Future directions

- ▶ Tight bounds? Perhaps via data-dependent LSH?
- ▶ Learned algorithms for discrepancy minimization?

Future directions

- ▶ Tight bounds? Perhaps via data-dependent LSH?
- ▶ Learned algorithms for discrepancy minimization?
- ▶ Applying discrepancy to feedforward layers?

Future directions

- ▶ Tight bounds? Perhaps via data-dependent LSH?
- ▶ Learned algorithms for discrepancy minimization?
- ▶ Applying discrepancy to feedforward layers?

Theory	Practice
SGD for convex functions	SGD for neural networks
Discrepancy-based methods	???

Future directions

- ▶ Tight bounds? Perhaps via data-dependent LSH?
- ▶ Learned algorithms for discrepancy minimization?
- ▶ Applying discrepancy to feedforward layers?

Theory	Practice
SGD for convex functions	SGD for neural networks
Discrepancy-based methods	???

Questions?

References I

- Alweiss, R., Liu, Y. P., and Sawhney, M. (2021).
Discrepancy minimization via a self-balancing walk.
Proceedings of the 53rd ACM Symposium on the Theory of Computing (STOC '2021).
- Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z., Du, Z., Liu, X., Zeng, A., Hou, L., et al. (2023).
Longbench: A bilingual, multitask benchmark for long context understanding.
arXiv preprint arXiv:2308.14508.
- Kamradt, G. (2023).
Needle in a haystack-pressure testing llms.
Github Repository, page 28.

References II

- Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A., Ye, H., Cai, T., Lewis, P., and Chen, D. (2024).
Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469.
- Yang, J. Y., Kim, B., Bae, J., Kwon, B., Park, G., Yang, E., Kwon, S. J., and Lee, D. (2024).
No token left behind: Reliable kv cache compression via importance-aware mixed precision quantization.
arXiv preprint arXiv:2402.18096.
- Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie, L. (2024).
Wkvquant: Quantizing weight and key/value cache for large language models gains more.
arXiv preprint arXiv:2402.12065.

References III

 Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. (2024). H2o: Heavy-hitter oracle for efficient generative inference of large language models. *Advances in Neural Information Processing Systems*, 36.