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Transformers & Attention

Each token = query, key, value embeddings (¢, k,v) € R4

Attention between (¢, k,v) and (q1,k1,v1),- -, (qn, kn, vn)

Attn(q; K, V) = [Ej~SoftmaxVi

where Pr[Softmax = 7] oc exp (%)



Problem: memory scales with context length

Because of attention, Transformers require memory
Qn - d)

n — number of processed tokens, d — dimension of embeddings
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Problem: memory scales with context length

Because of attention, Transformers require memory
Qn - d)

n — number of processed tokens, d — dimension of embeddings

Problem

Reduce the memory without sacrificing attention

Approaches:

» Quantization: MiKV [Yang et al., 2024], WKVQuant
[Yue et al., 2024]

» Token pruning: SnapKV [Li et al., 2024], H20
[Zhang et al., 2024]



LongBench [Bai et al., 2023] tests understanding of a long
context (7K words)

Example question: What is the primary conclusion Alice draws?
1. Adaptive heating always fails in real homes
2. User behavior is irrelevant to energy savings
3. ...

SnapKV [Li et al., 2024], H20 [Zhang et al., 2024]: take context
tokens with largest attention to question



Token pruning: limitations of prior work

Design a question independent token eviction policy with
provable guarantees and strong empirical performance



Token pruning: limitations of prior work

Design a question independent token eviction policy with
provable guarantees and strong empirical performance

» Prior algorithms are question-dependent

» Prior algorithms are purely heuristic



» Theory

1. Approximation of the denominator

2. Approximation of the numerator

» Experiments



Reminder: formula for attention

Attn(g K. V) = exp (E22) vy + .+ exp




Problem setting

At a given moment, the key-value cache
K= (ki,...,kn), V=(v1,...,0n)
compress it by a factor of 2
KicK,VcV; KobCK

so that for any fixed ¢

EsTi(q; K1, V1)

Attn(q; K, V) =~ EsTa(g: K2)




Naive approach: uniform sampling

k
BsTi(q; K1, Vi) = > 2exp <<\}?>> v, K1,Vi ~ Unif(K,V)
(k,U)G(Kl,Vl) d

EsTy(q; K2) = »  2exp (“j}?) , Ko ~ Unif(K)
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Naive approach: uniform sampling

k
EsTi(¢; K1, V1) == Z 2exp<<\}g>>v, Ky, Vi ~ Unif(K,V)
(k,U)G(Kl,Vl) d

EsTy(q; K2) = »  2exp (“j}?) , Ko ~ Unif(K)

Does not use the geometric properties of the vectors. Can
do better!
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1. Approximation of the denominator

2. Approximation of the numerator

» Experiments



Denominator approximation

EsTa(q; K2) : Z 2exp< NG )

keKo



Denominator approximation

EsTa(q; K2) : Z 2exp< NG )

keKo

Observation
Finding a good K>

Ests(q; K2) ~ Y exp (£52)
is equivalent to finding o : [n] — {+, -}
kid)\
Yiy o) - exp ($58) ~ 0

Phillips-Tai'20, Charikar-K.-Waingarten'24



Vector Balancing Problem

Our goal
Given vectors {k;}ic[y), find o : [n] = {+, -}

- (ki,q)
(i) - exp | 222 ) ~ 0 for any fixed
;:1 (i) - exp < Iz ) y q



Vector Balancing Problem

Our goal

Given vectors {k;}ic[y), find o : [n] = {+, -}

- (ki,q)
(i) - exp | 222 ) ~ 0 for any fixed
;:1 (i) - exp < Iz ) y q

Vector Balancing Problem:

Given vectors {u; }ic[y), find o : [n] = {+,—}:

<Z o(i)u;, z> ~ 0 for any fixed z

i=1



Vector Balancing Problem

There exists a mapping ¢ such that for every k, g € R%:

(6(k), 6(g)) = exp (U%)



Algorithm for the Vector Balancing Problem

Need
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Algorithm for the Vector Balancing Problem

Need

< something small

|<Z J(i)ui,z>
i=1

What is “something small”? What if z is known?



If z is known

Keep all prefixes balanced? That is
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If z is known

Keep all prefixes balanced? That is

o(i){ui, z)

1

J
< something small

)

for all 7 <n?

‘Ul Uz U3  Uqg  Us

(uz, 2) 0. 0.8 05 0.7 0.3
signs o (%)

2. 0(){ui, 2)



If z is known

Need '
j
o(i)(u;, z)| < something small
i=1
forall j <n
‘ Ul U9 us (% us
(ug, 2) 0.1 0.8 0.5 0.7 0.3
signs o (%) +

> 0(i)(us, 2) | 0.1



If z is known

Need '
j
o(i)(u;, z)| < something small
i=1
forall j <n
‘ ui u9 us Uy us
(uz, 2) 0.1 08 05 0.7 0.3
signs o (7) + -
>oo(i)(us, 2y | 0.1 =07



What if 2z is known?

Need '
j
o(i)(u;, z)| < something small
i=1
forall j <n
‘ (751 (%) us U4 us
(ug, 2) 0.1 0.8 0.5 0.7 0.3
signs o (1) + - +
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What if 2z is known?

Need '
j
o(i)(u;, z)| < something small
i=1
forall j <n
‘ (751 (%) us U4 us
(ug, 2) 0.1 0.8 0.5 0.7 0.3
signs o (1) + - + +

S o(i)(u, 2) | 0.1 —0.7 —0.2 0.5



What if 2z is known?

Need
){u;, z)| < something small
‘ ur U U3 Uy Us
(ug, 2) 0.1 0.8 05 0.7 0.3
signs o(7) + - + + -

> 0(i)(us,2) | 0.1 —0.7 —0.2 0.5 0.2



What if 2z is known?

Need
n
o(1){u;, z)| < something small
i=1
lur up  ug ug us
(uz, 2) 01 08 05 07 03
signs o(7) + - + + -

>0(i)(u,2) |01 =07 —0.2 0.5 0.2

If |(u;, 2)| <1 for all ¢ then ‘Zgzl J(i)(ui,z>’ <lforallj<n



Banaszczyk's Theorem

Corollary of Banaszczyk's Theorem

For any uq,...,up, ||us||2 < 1, there exists a distribution
P :{+,—}" — [0,1] such that for any z, ||z||2 = 1:

g

=1

>1 1

< Olog(n))| 21— —5




Banaszczyk's Theorem

Corollary of Banaszczyk's Theorem

For any uq,...,up, ||us||2 < 1, there exists a distribution
P :{+,—}" — [0,1] such that for any z, ||z||2 = 1:

g

=1

>1 1

< Olog(n))| 21— —5

There is a simple algorithm for sampling from P!



Self-Balancing Walk: algorithm for VBP

1 input: vectors ug, ..., u,, parameter (normalizer) «
2 for j from 1 ton

3 wj = ;00w

s pj =g —a- (wj,u;)

+, with probability p;

—, with probability 1 — p;.

Alweiss-Liu-Sawhney'21



Self-Balancing Walk: applied to denominator

1 input: vectors ki, ..., k,, parameter (normalizer) «

2 for j from 1 to n do

3 pPj = % *Q'Ziq‘ o(i) exp (%)

. +, with probability p;
s o) =
—, with probability 1 — p;.

5. end for

6. output: o
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S

oo
Attn(q; K, V) =

<Iil/’£>)v1 —|—...+exp<<k"’q>>vn
| )

k\}g>) +,.,+exp<(k"’

Q
[~

exp

N



Numerator approximation

Za(i) - exp (<k“ q)) v; = 0 for any fixed ¢
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Numerator approximation

Need

Find o : [n] — {+,—}

o(1) - ex v; ~ 0 for any fixed
> ot ex (s y fixed g

Is this a vector balancing problem instance? Yes!



Embedding construction

There exists a mapping ¢ such that for every k,q € R%:

(6(k), 6(q)) = exp (%)



Embedding construction

There exists a mapping ¢ such that for every k,q € R%:

(6(k), 6(q)) = exp (%)

Define -
d}(k'v U) = ¢(k) v

where ® is the tensor product



Self-Balancing Walk: applied to numerator

1 input: pairs of vectors (ki,v1), ..., (ky,v,), parameter
(normalizer) o

2> for j from 1 to n do
: . ki k;
b e Sgoten (S5 0

. +, with probability p;
4 a(j) =
—, with probability 1 — p;.

5. end for

6. output: o



Formal Problem Statement

Formal problem statement

Minimize K1, V1, K5 so that for any ¢:

EsTi(q; K1, V1)

<eg- ft KT- NV e
ESTo(q: K2) |p — - [Isoftmax (K™ - q) [|2-[[V]|

2

HAttn(q; K, V) -

where

oxp (52)

[softmax (KT - q)]; =




Theoretical Guarantees

Uniform sampling:

d
~ —zpoly(log(n))



Theoretical Guarantees

Uniform sampling:

d
~ —zpoly(log(n))

BalanceKV:

d1.5
~ TPOW(lOg(”))

Is this optimal?



Streaming Attention Approximation Space
Complexity

Lower bound

Any e-approximation algorithm has space complexity
1
~ (min {—2,d})
€

Reduction from INDEX



Streaming Attention Approximation Space
Complexity

Lower bound

Any e-approximation algorithm has space complexity
1
~ (min {—2,d})
€

Reduction from INDEX
Attention between (g, k,v) and (q1,k1,v1),- -, (qn, kn, Un) :

Attn(gq; K, V') == E;softmaxVi

where Pr[Softmax = i] x exp <_<l%>)



Streaming?



Streaming?

Streamable by merge and reduce

—— Self-Balancing Walk
ttokens

| trokens | ttokens

| | |
ttokens. t tokens t tokens. | ttokens.
| I
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2. Approximation of the numerator

» Experiments



Models

Llama-3.1-8B-Instruct Qwen-2.5-14B/32B-Instruct

CX) LLaMA - {;\; Qwen



Single layer attention approximation

Relative Error

Relative Error vs Compression Rate for Llama

] F+Layer1 - BalanceKYV | /

1| —@—Layer 2 - BalanceKV ’

— ¥--Layer 1 - Uniform Y

- ¥--Layer 2 - Uniform R4
—&@—Layer 5 - BalanceKV R
— ¥--Layer 5 - Uniform

0.5 0.4 0.3 0.2 0.1
Compression Rate




Benchmarks

LongBench [Bai et al., 2023]

» Tests understanding of a
long context (7K words)

Example question: What is the
primary conclusion Alice draws?
1. Adaptive heating always fails
in real homes

2. User behavior is irrelevant to
energy savings

Needle-In-A-Haystack
[Kamradt, 2023]

Tests the ability to preserve
surprising information in a
context of 4K — 100K
tokens

Example context: an essay
with inserted “The 5 best
things to do in San
Francisco are: ..."

Example question: “What
are the 5 best things to do
in San Franscisco?”



End-to-end Evalution on LongBench

Context+question compression by a factor of 4

Method Qwen2.5-32B  Qwen2.5-14B Llama-3.1-8B
Exact (Baseline) 51.77 54.14 50.17
StreamingLLM 35.52 38.71 39.79
PyramidKV 47.13 49.80 45.64
SnapKV 48.77 50.22 46.12
Uniform 48.76 49.88 46.38
BALANCEKYV 48.84 50.62 46.77

Metrics: F1, Rouge-L, Accuracy, Edit Distance



Needle-In-A-Haystack

Context+question compression by a factor of 4

Heuristic: pick out the most “surprising” tokens and compress the

rest
Method Average Accuracy
SnapKV 0.83
PyramidKV 0.90
StreamingLLM 0.31
Uniform Sampling 0.90

BALANCEKYV 0.99
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Future directions

» Tight bounds? Perhaps via data-dependent LSH?

» Learned algorithms for discrepancy minimization?

» Applying discrepancy to feedforward layers?

Theory

Practice

SGD for convex functions

SGD for neural networks

Discrepancy-based methods

Questions?

77
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