
Streaming Attention Approximation via
Discrepancy Theory

Michael Kapralov

Collaborators

Ekaterina Kochetkova Kshiteej Sheth Insu Han Amir Zandieh

EPFL EPFL KAIST Google AI

NeurIPS’25 (spotlight), Available at: arXiv:2502.07861

https://arxiv.org/abs/2502.07861

Transformers & Attention

Each token = query, key, value embeddings (q, k, v) ∈ Rd

Attention between (q, k, v) and (q1, k1, v1), . . . , (qn, kn, vn) :

Attn(q;K,V) := Ei∼Softmaxvi

where Pr[Softmax = i] ∝ exp
(
〈ki,q〉√

d

)

Problem: memory scales with context length

Because of attention, Transformers require memory

Ω(n · d)

n – number of processed tokens, d – dimension of embeddings

Problem

Reduce the memory without sacrificing attention

Approaches:

I Quantization: MiKV [Yang et al., 2024], WKVQuant
[Yue et al., 2024]

I Token pruning: SnapKV [Li et al., 2024], H20
[Zhang et al., 2024]

Problem: memory scales with context length

Because of attention, Transformers require memory

Ω(n · d)

n – number of processed tokens, d – dimension of embeddings

Problem

Reduce the memory without sacrificing attention

Approaches:

I Quantization: MiKV [Yang et al., 2024], WKVQuant
[Yue et al., 2024]

I Token pruning: SnapKV [Li et al., 2024], H20
[Zhang et al., 2024]

Problem: memory scales with context length

Because of attention, Transformers require memory

Ω(n · d)

n – number of processed tokens, d – dimension of embeddings

Problem

Reduce the memory without sacrificing attention

Approaches:

I Quantization: MiKV [Yang et al., 2024], WKVQuant
[Yue et al., 2024]

I Token pruning: SnapKV [Li et al., 2024], H20
[Zhang et al., 2024]

LongBench [Bai et al., 2023] tests understanding of a long
context (7K words)

Example question: What is the primary conclusion Alice draws?

1. Adaptive heating always fails in real homes

2. User behavior is irrelevant to energy savings

3. . . .

SnapKV [Li et al., 2024], H20 [Zhang et al., 2024]: take context
tokens with largest attention to question

Token pruning: limitations of prior work

Goal

Design a question independent token eviction policy with
provable guarantees and strong empirical performance

I Prior algorithms are question-dependent

I Prior algorithms are purely heuristic

Token pruning: limitations of prior work

Goal

Design a question independent token eviction policy with
provable guarantees and strong empirical performance

I Prior algorithms are question-dependent

I Prior algorithms are purely heuristic

I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments

Reminder: formula for attention

Attn(q;K,V) :=
exp

(
〈k1,q〉√

d

)
v1 + . . .+ exp

(
〈kn,q〉√

d

)
vn

exp
(
〈k1,q〉√

d

)
+ . . .+ exp

(
〈kn,q〉√

d

)

Problem setting

At a given moment, the key-value cache

K = (k1, . . . , kn), V = (v1, . . . , vn)

compress it by a factor of 2

K1 ⊂ K, V1 ⊂ V ; K2 ⊂ K

so that for any fixed q

Attn(q;K,V) ≈ Est1(q;K1, V1)

Est2(q;K2)

Naive approach: uniform sampling

Est1(q;K1, V1) :=
∑

(k,v)∈(K1,V1)

2 exp

(
〈k, q〉√
d

)
v, K1, V1 ∼ Unif(K,V)

Est2(q;K2) :=
∑
k∈K2

2 exp

(
〈k, q〉√
d

)
, K2 ∼ Unif(K)

Does not use the geometric properties of the vectors. Can
do better!

Naive approach: uniform sampling

Est1(q;K1, V1) :=
∑

(k,v)∈(K1,V1)

2 exp

(
〈k, q〉√
d

)
v, K1, V1 ∼ Unif(K,V)

Est2(q;K2) :=
∑
k∈K2

2 exp

(
〈k, q〉√
d

)
, K2 ∼ Unif(K)

Does not use the geometric properties of the vectors.

Can
do better!

Naive approach: uniform sampling

Est1(q;K1, V1) :=
∑

(k,v)∈(K1,V1)

2 exp

(
〈k, q〉√
d

)
v, K1, V1 ∼ Unif(K,V)

Est2(q;K2) :=
∑
k∈K2

2 exp

(
〈k, q〉√
d

)
, K2 ∼ Unif(K)

Does not use the geometric properties of the vectors. Can
do better!

I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments

I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments

Denominator approximation

Est2(q;K2) :=
∑
k∈K2

2 exp

(
〈k, q〉√
d

)

Observation

Finding a good K2

Est2(q;K2) ≈
∑n

i=1 exp
(
〈ki,q〉√

d

)
is equivalent to finding σ : [n]→ {+,−}∑n

i=1 σ(i) · exp
(
〈ki,q〉√

d

)
≈ 0

Phillips-Tai’20, Charikar-K.-Waingarten’24

Denominator approximation

Est2(q;K2) :=
∑
k∈K2

2 exp

(
〈k, q〉√
d

)

Observation

Finding a good K2

Est2(q;K2) ≈
∑n

i=1 exp
(
〈ki,q〉√

d

)
is equivalent to finding σ : [n]→ {+,−}∑n

i=1 σ(i) · exp
(
〈ki,q〉√

d

)
≈ 0

Phillips-Tai’20, Charikar-K.-Waingarten’24

Vector Balancing Problem

Our goal

Given vectors {ki}i∈[n], find σ : [n]→ {+,−}

n∑
i=1

σ(i) · exp

(
〈ki, q〉√

d

)
≈ 0 for any fixed q

Vector Balancing Problem:

Given vectors {ui}i∈[n], find σ : [n]→ {+,−}:〈
n∑
i=1

σ(i)ui, z

〉
≈ 0 for any fixed z

Vector Balancing Problem

Our goal

Given vectors {ki}i∈[n], find σ : [n]→ {+,−}

n∑
i=1

σ(i) · exp

(
〈ki, q〉√

d

)
≈ 0 for any fixed q

Vector Balancing Problem:

Given vectors {ui}i∈[n], find σ : [n]→ {+,−}:〈
n∑
i=1

σ(i)ui, z

〉
≈ 0 for any fixed z

Vector Balancing Problem

Fact

There exists a mapping φ such that for every k, q ∈ Rd:

〈φ(k), φ(q)〉 = exp

(
〈k, q〉√
d

)

Algorithm for the Vector Balancing Problem

Need ∣∣∣∣∣
〈

n∑
i=1

σ(i)ui, z

〉∣∣∣∣∣ ≤ something small

What is “something small”? What if z is known?

Algorithm for the Vector Balancing Problem

Need ∣∣∣∣∣
〈

n∑
i=1

σ(i)ui, z

〉∣∣∣∣∣ ≤ something small

What is “something small”?

What if z is known?

Algorithm for the Vector Balancing Problem

Need ∣∣∣∣∣
〈

n∑
i=1

σ(i)ui, z

〉∣∣∣∣∣ ≤ something small

What is “something small”? What if z is known?

If z is known

Keep all prefixes balanced? That is∣∣∣∣∣
j∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

for all j ≤ n?

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i)∑

i σ(i)〈ui, z〉

If z is known

Keep all prefixes balanced? That is∣∣∣∣∣
j∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

for all j ≤ n?

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i)∑

i σ(i)〈ui, z〉

If z is known

Need ∣∣∣∣∣
j∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

for all j ≤ n

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i) +∑

i σ(i)〈ui, z〉 0.1

If z is known

Need ∣∣∣∣∣
j∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

for all j ≤ n

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i) + −∑

i σ(i)〈ui, z〉 0.1 −0.7

What if z is known?

Need ∣∣∣∣∣
j∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

for all j ≤ n

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i) + − +∑

i σ(i)〈ui, z〉 0.1 −0.7 −0.2

What if z is known?

Need ∣∣∣∣∣
j∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

for all j ≤ n

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i) + − + +∑

i σ(i)〈ui, z〉 0.1 −0.7 −0.2 0.5

What if z is known?

Need ∣∣∣∣∣
n∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i) + − + + −∑

i σ(i)〈ui, z〉 0.1 −0.7 −0.2 0.5 0.2

Proposition

If |〈ui, z〉| ≤ 1 for all i then
∣∣∣∑j

i=1 σ(i)〈ui, z〉
∣∣∣ ≤ 1 for all j ≤ n

What if z is known?

Need ∣∣∣∣∣
n∑
i=1

σ(i)〈ui, z〉

∣∣∣∣∣ ≤ something small

u1 u2 u3 u4 u5
〈ui, z〉 0.1 0.8 0.5 0.7 0.3
signs σ(i) + − + + −∑

i σ(i)〈ui, z〉 0.1 −0.7 −0.2 0.5 0.2

Proposition

If |〈ui, z〉| ≤ 1 for all i then
∣∣∣∑j

i=1 σ(i)〈ui, z〉
∣∣∣ ≤ 1 for all j ≤ n

Banaszczyk’s Theorem

Corollary of Banaszczyk’s Theorem

For any u1, . . . , un, ‖ui‖2 ≤ 1, there exists a distribution
P : {+,−}n → [0, 1] such that for any z, ‖z‖2 = 1:

Pr
σ∼P

[∣∣∣∣∣
〈

n∑
i=1

σ(i)ui, z

〉∣∣∣∣∣ ≤ O(log(n))

]
≥ 1− 1

n100

There is a simple algorithm for sampling from P !

Banaszczyk’s Theorem

Corollary of Banaszczyk’s Theorem

For any u1, . . . , un, ‖ui‖2 ≤ 1, there exists a distribution
P : {+,−}n → [0, 1] such that for any z, ‖z‖2 = 1:

Pr
σ∼P

[∣∣∣∣∣
〈

n∑
i=1

σ(i)ui, z

〉∣∣∣∣∣ ≤ O(log(n))

]
≥ 1− 1

n100

There is a simple algorithm for sampling from P !

Self-Balancing Walk: algorithm for VBP

1: input: vectors u1, . . . , un, parameter (normalizer) α

2: for j from 1 to n

3: wj =
∑

i<j σ(i)ui

4: pj = 1
2 − α · 〈wj , uj〉

5: σ(j) =

+, with probability pj

−, with probability 1− pj .
6: output: σ

Alweiss-Liu-Sawhney’21

Self-Balancing Walk: applied to denominator

1: input: vectors k1, . . . , kn, parameter (normalizer) α

2: for j from 1 to n do

3: pj = 1
2 − α ·

∑
i<j σ(i) exp

(
〈ki,kj〉√

d

)
4: σ(j) =

+, with probability pj

−, with probability 1− pj .
5: end for

6: output: σ

I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments

I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments

Attn(q;K,V) =
exp

(
〈k1,q〉√

d

)
v1 + . . .+ exp

(
〈kn,q〉√

d

)
vn

exp
(
〈k1,q〉√

d

)
+ . . .+ exp

(
〈kn,q〉√

d

)

Numerator approximation

Need

Find σ : [n]→ {+,−}

n∑
i=1

σ(i) · exp

(
〈ki, q〉√

d

)
vi ≈ 0 for any fixed q

Is this a vector balancing problem instance? Yes!

Numerator approximation

Need

Find σ : [n]→ {+,−}

n∑
i=1

σ(i) · exp

(
〈ki, q〉√

d

)
vi ≈ 0 for any fixed q

Is this a vector balancing problem instance?

Yes!

Numerator approximation

Need

Find σ : [n]→ {+,−}

n∑
i=1

σ(i) · exp

(
〈ki, q〉√

d

)
vi ≈ 0 for any fixed q

Is this a vector balancing problem instance? Yes!

Embedding construction

Fact

There exists a mapping φ such that for every k, q ∈ Rd:

〈φ(k), φ(q)〉 = exp

(
〈k, q〉√
d

)

Define ψ:
ψ(k, v) := φ(k)⊗ v

where ⊗ is the tensor product

Embedding construction

Fact

There exists a mapping φ such that for every k, q ∈ Rd:

〈φ(k), φ(q)〉 = exp

(
〈k, q〉√
d

)

Define ψ:
ψ(k, v) := φ(k)⊗ v

where ⊗ is the tensor product

Self-Balancing Walk: applied to numerator

1: input: pairs of vectors (k1, v1), . . . , (kn, vn), parameter

(normalizer) α

2: for j from 1 to n do

3: pj = 1
2 − α ·

∑
i<j σ(i) exp

(
〈ki,kj〉√

d

)
〈vi, vj〉

4: σ(j) =

+, with probability pj

−, with probability 1− pj .
5: end for

6: output: σ

Formal Problem Statement

Formal problem statement

Minimize K1, V1,K2 so that for any q:∥∥∥∥Attn(q;K,V)− Est1(q;K1, V1)

Est2(q;K2)

∥∥∥∥
2

≤ ε·‖softmax
(
KT · q

)
‖2·‖V ‖F .

where

[softmax
(
KT · q

)
]j :=

exp
(
〈kj ,q〉√

d

)
∑n

i=1 exp
(
〈ki,q〉√

d

)

Theoretical Guarantees

Uniform sampling:

≈ d

ε2
poly(log(n))

BalanceKV:

≈ d1.5

ε
poly(log(n))

Is this optimal?

Theoretical Guarantees

Uniform sampling:

≈ d

ε2
poly(log(n))

BalanceKV:

≈ d1.5

ε
poly(log(n))

Is this optimal?

Streaming Attention Approximation Space
Complexity

Lower bound

Any ε-approximation algorithm has space complexity

≈ Ω

(
min

{
1

ε2
, d

})

Reduction from INDEX

Attention between (q, k, v) and (q1, k1, v1), . . . , (qn, kn, vn) :

Attn(q;K,V) := Ei∼Softmaxvi

where Pr[Softmax = i] ∝ exp
(
〈ki,q〉√

d

)

Streaming Attention Approximation Space
Complexity

Lower bound

Any ε-approximation algorithm has space complexity

≈ Ω

(
min

{
1

ε2
, d

})

Reduction from INDEX

Attention between (q, k, v) and (q1, k1, v1), . . . , (qn, kn, vn) :

Attn(q;K,V) := Ei∼Softmaxvi

where Pr[Softmax = i] ∝ exp
(
〈ki,q〉√

d

)

Streaming?

Streamable by merge and reduce

Streaming?

Streamable by merge and reduce

I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments

I Theory

1. Approximation of the denominator

2. Approximation of the numerator

I Experiments

Models

Llama-3.1-8B-Instruct Qwen-2.5-14B/32B-Instruct

Single layer attention approximation

0.10.20.30.40.5
Compression Rate

0.1

0.2

0.3

0.4

0.5

Re
lat

ive
 E

rro
r

Relative Error vs Compression Rate for Llama
Layer 1 - BalanceKV
Layer 1 - Uniform
Layer 2 - BalanceKV
Layer 2 - Uniform
Layer 5 - BalanceKV
Layer 5 - Uniform

Benchmarks

LongBench [Bai et al., 2023]

I Tests understanding of a
long context (7K words)

Example question: What is the
primary conclusion Alice draws?

1. Adaptive heating always fails
in real homes

2. User behavior is irrelevant to
energy savings

3. . . .

Needle-In-A-Haystack
[Kamradt, 2023]

I Tests the ability to preserve
surprising information in a
context of 4K − 100K
tokens

I Example context: an essay
with inserted “The 5 best
things to do in San
Francisco are: . . . ”

I Example question: “What
are the 5 best things to do
in San Franscisco?”

End-to-end Evalution on LongBench

Context+question compression by a factor of 4

Method Qwen2.5-32B Qwen2.5-14B Llama-3.1-8B

Exact (Baseline) 51.77 54.14 50.17
StreamingLLM 35.52 38.71 39.79
PyramidKV 47.13 49.80 45.64
SnapKV 48.77 50.22 46.12
Uniform 48.76 49.88 46.38
BalanceKV 48.84 50.62 46.77

Metrics: F1, Rouge-L, Accuracy, Edit Distance

Needle-In-A-Haystack

Context+question compression by a factor of 4

Heuristic: pick out the most “surprising” tokens and compress the
rest

Method Average Accuracy

SnapKV 0.83
PyramidKV 0.90
StreamingLLM 0.31
Uniform Sampling 0.90
BalanceKV 0.99

Future directions

I Tight bounds? Perhaps via data-dependent LSH?

I Learned algorithms for discrepancy minimization?

I Applying discrepancy to feedforward layers?

Theory Practice

SGD for convex functions SGD for neural networks

Discrepancy-based methods ???

Questions?

Future directions

I Tight bounds? Perhaps via data-dependent LSH?

I Learned algorithms for discrepancy minimization?

I Applying discrepancy to feedforward layers?

Theory Practice

SGD for convex functions SGD for neural networks

Discrepancy-based methods ???

Questions?

Future directions

I Tight bounds? Perhaps via data-dependent LSH?

I Learned algorithms for discrepancy minimization?

I Applying discrepancy to feedforward layers?

Theory Practice

SGD for convex functions SGD for neural networks

Discrepancy-based methods ???

Questions?

Future directions

I Tight bounds? Perhaps via data-dependent LSH?

I Learned algorithms for discrepancy minimization?

I Applying discrepancy to feedforward layers?

Theory Practice

SGD for convex functions SGD for neural networks

Discrepancy-based methods ???

Questions?

Future directions

I Tight bounds? Perhaps via data-dependent LSH?

I Learned algorithms for discrepancy minimization?

I Applying discrepancy to feedforward layers?

Theory Practice

SGD for convex functions SGD for neural networks

Discrepancy-based methods ???

Questions?

References I

Alweiss, R., Liu, Y. P., and Sawhney, M. (2021).
Discrepancy minimization via a self-balancing walk.
Proceedings of the 53rd ACM Symposium on the Theory of
Computing (STOC ’2021).

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z., Du,
Z., Liu, X., Zeng, A., Hou, L., et al. (2023).
Longbench: A bilingual, multitask benchmark for long context
understanding.
arXiv preprint arXiv:2308.14508.

Kamradt, G. (2023).
Needle in a haystack-pressure testing llms.
Github Repository, page 28.

References II

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A., Ye,
H., Cai, T., Lewis, P., and Chen, D. (2024).
Snapkv: Llm knows what you are looking for before
generation.
arXiv preprint arXiv:2404.14469.

Yang, J. Y., Kim, B., Bae, J., Kwon, B., Park, G., Yang, E.,
Kwon, S. J., and Lee, D. (2024).
No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization.
arXiv preprint arXiv:2402.18096.

Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie, L.
(2024).
Wkvquant: Quantizing weight and key/value cache for large
language models gains more.
arXiv preprint arXiv:2402.12065.

References III

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R.,
Song, Z., Tian, Y., Ré, C., Barrett, C., et al. (2024).
H2o: Heavy-hitter oracle for efficient generative inference of
large language models.
Advances in Neural Information Processing Systems, 36.

