Sparse Navigable Graphs for Nearest
Neighbor Search

Sanjeev Khanna
Univ. of Pennsylvania

Joint work with: Ashwin Padaki (Univ. of Pennsylvania)
Erik Waingarten (Univ. of Pennsylvania)

Nearest Neighbor Search (NNS)

Input: A dataset P containing n elements, an underlying
distance metric d, and a query point q.
Goal: Find a point in P that is approximately-closest to q.

= Image/product search: find visually similar photos or items
from a given example.

= Recommendations & personalization: retrieve nearest
usersf/items from learned embeddings.

= Retrieval-Augmented Generation: LLMs fetch relevant
documents or memories via nearest neighbors.

A New Approach: Graph-based NNS

NNS via greedy local exploration

= Each pointin P stores edges to a few nearby points.
= An NNS query q is answered by a greedy walk to a neighbor
closest to the target:
= start at an initial point s, and
= repeatedly move to a neighbor closer to the target.
= Dataset geometry is captured implicitly through local
connectivity.
= Enables fast, scalable search in practice (DiskANN, HNSW).

Graph Structure and NNS Performance

= Graph NNS works well in practice when graphs have low
degree and short greedy paths.

= Theoretical perspective: search time can be viewed roughly
as (greedy path length) x (max vertex degree).

Sparse graph with short greedy paths = Fast NNS search.

Motivating Question: How can we construct sparse graphs
that still guarantee efficient greedy navigation for NNS?

Navigable Graphs

= Given a dataset P with metric d, a directed graph G(P, E) is
navigable if forall s # t € P, thereis an edge (s,u) € E s.t.
d(u,t) <d(s,t).
= This definition ensures that given any target pointt € P, no
matter the starting point, greedy search will end up at t.

Some issues ...
= The search path may be very long.

= This requirementis too weak to recover a good answer
when query point g & P.

a-Navigable Graphs: A Small-world fix

[Indyk-Xu "23]

Given a dataset P with metric d , a directed graph G(P, E) is

a-navigable if forall s # t € P, thereis an edge (s,u) € E s.t.
d(u,t) < d(s,t)/a.

|dea: Each greedy step makes multiplicative progress.

Theorem [Indyk-Xu "23]
For any, if G is a-navigable then greedy search returns a

(a_—l—l + e)-ANN in O(log (%)) hops where A is the aspect ratio.

a—1

Takeaway: Sparse a-navigable graphs = Fast NNS search!

Building Sparse a-Navigable Graphs

Slow-Disk ANN:

= Repeatedly add an edge from source s to nearest vertex in
P \ {s} whose a—navigability constraint is not covered.

= A natural strategy for building sparse a—navigable graphs.

[Indyk-Xu 23] Slow-DiskANN builds an a-navigable graph with
degmax < (4)*®) (here A(P): doubling dimension).

[Diwan et. al. 24| For any metric d, there is a 1-navigable
graph with deg,,; < 0(\/n).

Limitations of General Approaches

Result 1[K, Padaki, Waingarten "25]

There is a dataset P for which there is an a-navigable graph G
of max degree O(logn), but where Slow-DiskANN outputs a
graph of max degree ©(n).

= Slow-DiskANN gives ()(n)-approximation to max degree
on this instance.

a-Sparsest Navigable Subgraph Problem

a-Sparsest Navigable Graph Problem (a-SNP)

Given a dataset (P,d) and a = 1, what s the sparsest a-
navigable graph on P?

= We will measure sparsity in terms of max degree but our
results carry over to total number of edges.

Questions:
= What is the complexity of exact a-SNP?
= How fast can we (approximately) solve it?

a-SNP and Set Cover

Result 2 [K, Padaki, Waingarten ’25]
a-SNP is equivalent to the Set Cover problem.

= Inherits algorithms and hardness results for Set Cover.

= a-SNP is NP-hard to approximate to within a ®(In n) factor.

= On the other hand, standard greedy set cover algorithm
can be implemented in O(mn) time when the instance
contains m sets and n elements.

= This gives a baseline 0(n?) time O (In n)-approximation
algorithm for a-SNP.

a-SNP Reduces to Set Cover

Recall a-navigability from a source vertex s requires: for all
t € P\ {s},thereis an edge (s,u) € E s.t.
d(u,t) < d(s,t)/a.

Equivalent Set Cover Instance

= Pointsin P \ {s} are universe U of elements for set cover.
s Foreachu € P\ {s}, define a set

Z(s,u) ={t|du,t) <d(s,t)/a} (the family of sets F).
= So minimizing deg(s) < minimizing set cover for (U, F).

Overall, we solve n set cover instances: one for each s € P.

Set Cover Reduces to a-SNP

Given a set coverinstance (U, F'), we build a dataset (P, d)
such that optimal max degree of a 1-navigable graph on (P, d)
is proportional to optimal set cover size on (U, F).

s LetU = {x1,x,, ..., x,},and F = {S§,5,, ..., S, }.
= P contains a special root vertex r, as well as vertices
representing elementsin U and setsin F.
= Metric d ensures that navigability constraints from the root
vertex r require that for each element x; € U:
= either we have a direct edge from r to x;, or
= an edgefromrtoasetsS; suchthat x; € §;.
= Minimizing out-degree from r < minimizing set cover size.

Set Cover Reduces to Sparse Navigability

d(r, Si) — 1, d(T’, X]) =2 — Y, and d(Si,Xj) = 1if Xj (S Si'

So d(Sl-,xj) < d(r, xj) S X €5,

Set Cover Reduces to Sparse Navigability

= The basic gadget is not sufficient as max degree will be
dominated by set-set and element-element navigability
constraints.

= Make many copies of this gadget to ensure that max
degree is determined by the optimal set cover cost.

= Inparticular, L = (m + n)? copies of the basic gadget
where each of the L roots is connected to sets/elements in
each gadget ensures that max degree « set cover cost.

Faster Algorithms via Set Cover Connection

Baseline solution for O(In n)-approximation

= Explicitly construct n set cover instances where each

instance corresponds to a source vertex s.
s Takes O(n?®) time to construct all instances, and another

0(n®) time to run greedy set cover on them.

Can we O(In n)-approximate a-SNP any faster?

Faster Algorithms via Set Cover Connection

m Forasourcesandu € P,
checkingift € Z(s,u) & d(u,t) < d(s,t)/a.
s Set membership queries take 0(1) time!
= We exploit this and bypass an explicit construction of set

cover instances.

Result 3 [K, Padaki, Waingarten ’25]
Thereis an O(In n)-approximation algorithm for a-SNP that
runs in O(n?- OPT) time where OPT is optimal max degree.

Set Cover in Membership Query Model

Lemma : In membership query model, O (In n)-approximation
to Set Cover can be achieved in O((m + n) - OPT) time.

= Inour setting, for each source s, we have m = n — 1, hence
each set coverinstance can be solved in O(n - OPT) time.

Plan:
= Greedy set cover algorithm relies on repeatedly choosing a

heavy set: a set that covers Q(%) elements.

= If we can show this can be done in O (m) time, the result
follows as greedy chooses O(OPT - Inn) sets.

Finding a Heavy Set

|dea: Let us consider a simplified setting where every set in
OPT covers O(n/OPT) elements.

= Sample a family F’' € F of @(% -log m) sets: F' almost

certainly a heavy set!
= Sampleaset U’ € U of ©(OPT - log m) elements.
= ForeachsetS € F',
= use membership queries tofind |SNU’|.
» set Sisheavyiff |[SNU'| = 0(log m).
= Since each membership query takes O (1) time, we can
identify a heavy setin O(|F’| - |U’'|)= 0(m) time.

The Small OPT Regime

= Previous algorithm works well when OPT is small.
= It solves a-SNP in O(n?) time when OPT = 0(1). This can
in fact be shown to be optimal in the small OPT regime.

Result 4 [K, Padaki, Waingarten ’25]
Any algorithm that achieves o(n)-approximation to 1-SNP
must make ((n?) queries to metric d.

= Thereisa 1-SNP instance with OPT = 3 where outputting
any o(n)-approximate solution requires Q.(n*) queries.

Fast Bicriteria Navigability when OPT is Large

= However, as OPT approaches n, the previous algorithm
degenerates to the baseline 0(n*) time algorithm.
= Can we beat the baseline algorithm when OPT is large?

= Yes, if we settle for a bicriteria-approximation!
= We will design a solution to a-SNP and compare its
performance to an optimal solution to 2a-SNP.
= We will refer to this problem as («, 2a)-SNP.

Result 5 [K, Padaki, Waingarten ’25]
There is an 0(n®) time algorithm for O (In n)-approximation

to (a, 2a)-SNP.

Bicriteria Navigability via Matrix Multiplication

= The set cover approach to a-SNP iteratively builds a graph
G (P, E) using two steps repeatedly:
= ldentify pairs s, t that do not yet satisfy a-navigability in G(P, E).
= Greedily add edges (sets) that take care of many unsatisfied pairs.

= Both tasks are bottleneck when max degree is large.
= In particular, even verifying if the current solution is
feasible requires checking:
Vs #t€P,and(s,u) € Eifd(u,t) <d(s,t)/a.
s Takes O(n? - deg(G)) time: becomes 0(n3) as deg(G) — n.

Can we at least speed up verification?

Batch Verification of a-Navigability

= Suppose d(s,t) = r, and we want to verify if it is covered.
= Define matrices 4, B, € {0,1}"*™ as below:
s Als,ul =1iff(s,u) € E. (Adjacency in G)
s B.lu,t] =1iff d(u,t) < d(s,t)/a. (Small distances in P)
= Then the pair s, t is covered in G iff
(A-B,)|[s, t] # 0.
= So verification for all pairs s, t at distance r can be done by
a single matrix multiplication.
= We can group distances into geometric ranges and verify

~ InA, . . .
O(HT) distinct distance scales.
= Thus (approximate) verification can be done in 0(n®) time.

Batch Verification to a-Navigability

= Let K,, bethe optimal max degree ina (2a)-navigable
graph on P.

Lemma: If each vertex randomly samples K, , edges to its
uncovered neighbors, then w.h.p. total number of pairs
violating a—navigability constraint reduces by an O(1) factor.

= So repeating the verification + random sampling O (In n)
times gives the desired bicriteria result.

From Batch Verification to a-Navigability

Lemma: If each vertex randomly samples K, , edges to its
uncovered neighbors, then w.h.p. total number of pairs
violating a—navigability constraint reduces by an 0(1) factor.

= Fix source s, and an edge (s, u), that covers 2a—-navigability
constraints from s to points y;, y,, ..., y,, arranged in
increasing order of distance from s.

= Thenforanya <g/2andb > q/2, we have
d(s,ya d(s, d(s,
AV, yp) < d(yg,w) +d(w,y,) < (5.Ya) n (s.yp) < (s.yp)

2a 2a a
= So every vertex in first half can a—cover every vertex in

second half!

Concluding Remarks

= We showed the following:

= a-SNP is equivalent to set cover and hence 0(In n)-hard
to approximate.

= O0(Inn)-approximation for a-SNP in 0(n?- OPT) time,
and Q(n?) time needed even when OPT = 0(1).
= O(Inn)-approximation for (@, 2a)-SNP in O(n®) time.

Parallel work by [Conway et. al. ’25] gives stronger version
of some of our results:

= O(In n)-approximation for 1-SNP in 0(n?) time.
= O(In n)-approximation for a-SNP in 0 (n?) time.

Thank you !

	Slide 1: Sparse Navigable Graphs for Nearest Neighbor Search
	Slide 2: Nearest Neighbor Search (NNS)
	Slide 3: A New Approach: Graph-based NNS
	Slide 4: Graph Structure and NNS Performance
	Slide 5: Navigable Graphs
	Slide 6: alpha-Navigable Graphs: A Small-world fix
	Slide 7: Building Sparse alpha-Navigable Graphs
	Slide 8: Limitations of General Approaches
	Slide 9: alpha-Sparsest Navigable Subgraph Problem
	Slide 10: alpha-SNP and Set Cover
	Slide 11: alpha-SNP Reduces to Set Cover
	Slide 12: Set Cover Reduces to alpha-SNP
	Slide 13: Set Cover Reduces to Sparse Navigability
	Slide 14: Set Cover Reduces to Sparse Navigability
	Slide 15: Faster Algorithms via Set Cover Connection
	Slide 16: Faster Algorithms via Set Cover Connection
	Slide 17: Set Cover in Membership Query Model
	Slide 18: Finding a Heavy Set
	Slide 19: The Small cap O cap P cap T Regime
	Slide 20: Fast Bicriteria Navigability when cap O cap P cap T is Large
	Slide 21: Bicriteria Navigability via Matrix Multiplication
	Slide 22: Batch Verification of alpha-Navigability
	Slide 23: Batch Verification to alpha-Navigability
	Slide 24: From Batch Verification to alpha-Navigability
	Slide 25: Concluding Remarks
	Slide 26

