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Nearest Neighbor Search (NNS) 

Input: A dataset 𝑃 containing 𝑛 elements, an underlying 
distance metric 𝑑, and a query point 𝑞.
Goal: Find a point in 𝑃 that is approximately-closest to 𝑞.

◼ Image/product search: find visually similar photos or items 
from a given example.

◼ Recommendations & personalization: retrieve nearest 
users/items from learned embeddings.

◼ Retrieval-Augmented Generation: LLMs fetch relevant 
documents or memories via nearest neighbors.



A New Approach: Graph-based NNS

NNS via greedy local exploration

◼ Each point in 𝑃 stores edges to a few nearby points.
◼ An NNS query 𝑞 is answered by a greedy walk to a neighbor 

closest to the target: 
◼ start at an initial point 𝑠, and 
◼ repeatedly move to a neighbor closer to the target. 

◼ Dataset geometry is captured implicitly through local 
connectivity. 

◼ Enables fast, scalable search in practice (DiskANN, HNSW).



Graph Structure and NNS Performance

◼ Graph NNS works well in practice when graphs have low 
degree and short greedy paths. 

◼ Theoretical perspective: search time can be viewed roughly 
as (greedy path length) x (max vertex degree).

Sparse graph with short greedy paths ⟹ Fast NNS search.

Motivating Question: How can we construct sparse graphs 
that still guarantee efficient greedy navigation for NNS?



Navigable Graphs 

◼ Given a dataset 𝑃 with metric 𝑑, a directed graph 𝐺(𝑃, 𝐸) is 
navigable if for all 𝑠 ≠ 𝑡 ∈ 𝑃, there is an edge 𝑠, 𝑢 ∈ 𝐸 s.t.   

𝑑 𝑢, 𝑡 < 𝑑 𝑠, 𝑡 .
◼ This definition ensures that given any target point 𝑡 ∈ 𝑃, no 

matter the starting point, greedy search will end up at 𝑡.

Some issues …

◼ The search path may be very long. 
◼ This requirement is too weak to recover a good answer 

when query point 𝑞 ∉ 𝑃.



𝛼-Navigable Graphs: A Small-world fix 

[Indyk-Xu ’23]
Given a dataset 𝑃 with metric 𝑑 , a directed graph 𝐺(𝑃, 𝐸) is  
𝛼-navigable if for all 𝑠 ≠ 𝑡 ∈ 𝑃, there is an edge 𝑠, 𝑢 ∈ 𝐸 s.t.   

𝑑 𝑢, 𝑡 < 𝑑 𝑠, 𝑡 /𝛼.

Idea: Each greedy step makes multiplicative progress.

Theorem [Indyk-Xu ’23]
For any , if 𝐺 is 𝛼-navigable then greedy search returns a 

𝛼+1

𝛼−1
+ 𝜖 -ANN in 𝑂(log

Δ

𝜖
) hops where Δ is the aspect ratio.

Takeaway: Sparse 𝛼-navigable graphs ⟹ Fast NNS search!



Building Sparse 𝛼-Navigable Graphs

Slow-DiskANN: 
◼ Repeatedly add an edge from source 𝑠 to nearest vertex in 

𝑃 ∖ {𝑠} whose 𝛼–navigability constraint is not covered. 
◼ A natural strategy for building sparse 𝛼–navigable graphs.

[Indyk-Xu ’23] Slow-DiskANN builds an 𝛼-navigable graph with 
𝑑𝑒𝑔𝑚𝑎𝑥 ≤ (4 𝛼)𝜆(𝑃) (here 𝜆(𝑃): doubling dimension).

[Diwan et. al. ’24] For any metric 𝑑, there is a 1-navigable 

graph with 𝑑𝑒𝑔𝑎𝑣𝑔 ≤ ෨𝑂( 𝑛 ).

 



Limitations of General Approaches

Result 1 [K, Padaki, Waingarten ’25]
There is a dataset 𝑃 for which there is an 𝛼-navigable graph 𝐺 
of max degree 𝑂(log 𝑛), but where Slow-DiskANN outputs a 
graph of max degree Θ(𝑛).

◼ Slow-DiskANN gives ෩Ω(𝑛)–approximation to max degree 
on this instance.



𝛼-Sparsest Navigable Subgraph Problem

𝛼-Sparsest Navigable Graph Problem (𝛼-SNP)

Given a dataset (𝑃, 𝑑) and 𝛼 ≥ 1, what is the sparsest 𝛼-
navigable graph on 𝑃?

◼ We will measure sparsity in terms of max degree but our 
results carry over to total number of edges.

Questions:
◼ What is the complexity of exact 𝛼-SNP ?
◼ How fast can we (approximately) solve it?

 



𝛼-SNP and Set Cover

Result 2 [K, Padaki, Waingarten ’25]
𝛼-SNP is equivalent to the Set Cover problem. 

◼ Inherits algorithms and hardness results for Set Cover.
◼ 𝛼-SNP is NP-hard to approximate to within a Θ(ln 𝑛) factor.
◼ On the other hand, standard greedy set cover algorithm 

can be implemented in 𝑂(𝑚𝑛) time when the instance 
contains 𝑚 sets and 𝑛 elements. 

◼ This gives a baseline 𝑂(𝑛3) time 𝑂(ln 𝑛)-approximation 
algorithm for 𝛼-SNP.



𝛼-SNP Reduces to Set Cover

Recall 𝛼-navigability from a source vertex 𝑠 requires: for all 
𝑡 ∈ 𝑃 ∖ {𝑠}, there is an edge 𝑠, 𝑢 ∈ 𝐸 s.t.   
    𝑑 𝑢, 𝑡 < 𝑑 𝑠, 𝑡 /𝛼.

Equivalent Set Cover Instance

◼ Points in 𝑃 ∖ {𝑠} are universe 𝑈 of elements for set cover.
◼ For each 𝑢 ∈ 𝑃 ∖ {𝑠}, define a set 
     𝑍 𝑠, 𝑢 =  𝑡 𝑑 𝑢, 𝑡 < 𝑑 𝑠, 𝑡 /𝛼} (the family of sets 𝐹).
◼ So minimizing deg(𝑠) ⟺ minimizing set cover for (𝑈, 𝐹).

Overall, we solve 𝑛 set cover instances: one for each 𝑠 ∈ 𝑃. 



Set Cover Reduces to 𝛼-SNP 

Given a set cover instance (𝑈, 𝐹), we build a dataset (𝑃, 𝑑) 
such that optimal max degree of a 1-navigable graph on (𝑃, 𝑑) 
is proportional to optimal set cover size on (𝑈, 𝐹). 

◼ Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}, and 𝐹 = {𝑆1, 𝑆2, … , 𝑆𝑚}. 
◼ 𝑃 contains a special root vertex 𝑟, as well as vertices 

representing elements in 𝑈 and sets in 𝐹.
◼ Metric 𝑑 ensures that navigability constraints from the root 

vertex 𝑟 require that for each element 𝑥𝑗 ∈ 𝑈:

◼ either we have a direct edge from 𝑟 to 𝑥𝑗, or

◼ an edge from 𝑟 to a set 𝑆𝑖  such that 𝑥𝑗 ∈ 𝑆𝑖. 

◼ Minimizing out-degree from 𝑟 ⟺ minimizing set cover size. 



Set Cover Reduces to Sparse Navigability

So 𝑑 𝑆𝑖 , 𝑥𝑗 < 𝑑 𝑟, 𝑥𝑗  ⟺ 𝑥𝑗 ∈ 𝑆𝑖.

𝑑 𝑟, 𝑆𝑖  = 1, 𝑑 𝑟, 𝑥𝑗 = 2 − 𝛾, and 𝑑 𝑆𝑖 , 𝑥𝑗 = 1 if 𝑥𝑗 ∈ 𝑆𝑖. 



Set Cover Reduces to Sparse Navigability

◼ The basic gadget is not sufficient as max degree will be 
dominated by set-set and element-element navigability 
constraints.

◼ Make many copies of this gadget to ensure that max 
degree is determined by the optimal set cover cost.

◼ In particular, 𝐿 = 𝑚 + 𝑛 2 copies of the basic gadget 
where each of the 𝐿 roots is connected to sets/elements in 
each gadget ensures that max degree ∝ set cover cost.



Faster Algorithms via Set Cover Connection

Baseline solution for 𝑂(ln 𝑛)-approximation

◼ Explicitly construct 𝑛 set cover instances where each 
instance corresponds to a source vertex 𝑠.

◼ Takes 𝑂(𝑛3) time to construct all instances, and another 
𝑂(𝑛3) time to run greedy set cover on them.

         Can we 𝑂(ln 𝑛)-approximate 𝛼-SNP any faster?



Faster Algorithms via Set Cover Connection

◼ For a source 𝑠 and 𝑢 ∈ 𝑃, 
  checking if 𝑡 ∈ 𝑍(𝑠, 𝑢) ⟺ 𝑑 𝑢, 𝑡 < 𝑑 𝑠, 𝑡 /𝛼. 
◼ Set membership queries take 𝑂(1) time!
◼ We exploit this and bypass an explicit construction of set 

cover instances.

Result 3 [K, Padaki, Waingarten ’25]
There is an 𝑂(ln 𝑛)-approximation algorithm for 𝛼-SNP that 
runs in ෨𝑂(𝑛2⋅ 𝑂𝑃𝑇) time where 𝑂𝑃𝑇 is optimal max degree.



Set Cover in Membership Query Model

Lemma : In membership query model, 𝑂(ln 𝑛)-approximation 
to Set Cover can be achieved in ෨𝑂((𝑚 + 𝑛) ⋅ 𝑂𝑃𝑇) time. 

◼ In our setting, for each source 𝑠, we have 𝑚 = 𝑛 − 1, hence 
each set cover instance can be solved in ෨𝑂(𝑛 ⋅ 𝑂𝑃𝑇) time. 

Plan:
◼ Greedy set cover algorithm relies on repeatedly choosing a 

heavy set: a set that covers Ω(
𝑛

𝑂𝑃𝑇
) elements. 

◼ If we can show this can be done in ෨𝑂(𝑚) time, the result 
follows as greedy chooses 𝑂(𝑂𝑃𝑇 ⋅ ln 𝑛) sets. 



Finding a Heavy Set 

Idea: Let us consider a simplified setting where every set in 
𝑂𝑃𝑇 covers Θ(𝑛/𝑂𝑃𝑇) elements.

◼ Sample a family 𝐹′ ⊆ 𝐹 of Θ(
𝑚

𝑂𝑃𝑇
⋅ log 𝑚) sets: 𝐹′ almost 

certainly a heavy set!
◼ Sample a set 𝑈′ ⊆ 𝑈 of Θ(𝑂𝑃𝑇 ⋅ log 𝑚) elements.
◼ For each set 𝑆 ∈ 𝐹′ ,

◼ use membership queries to find |𝑆 ∩ 𝑈′| .
◼ set 𝑆 is heavy iff 𝑆 ∩ 𝑈′ = Θ(log 𝑚).

◼ Since each membership query takes 𝑂(1) time, we can 
identify a heavy set in 𝑂(|𝐹′| ⋅ |𝑈′|)= ෨𝑂(𝑚) time.



The Small 𝑂𝑃𝑇 Regime

◼ Previous algorithm works well when 𝑂𝑃𝑇 is small.
◼ It solves 𝛼-SNP in ෨𝑂(𝑛2) time when 𝑂𝑃𝑇 = ෨𝑂(1). This can  

in fact be shown to be optimal in the small 𝑂𝑃𝑇 regime.

Result 4 [K, Padaki, Waingarten ’25]
Any algorithm that achieves 𝑜(𝑛)-approximation to 1-SNP 
must make Ω 𝑛2  queries to metric 𝑑.

◼ There is a 1-SNP instance with 𝑂𝑃𝑇 = 3 where outputting 
any 𝑜(𝑛)–approximate solution requires Ω 𝑛2  queries.



Fast Bicriteria Navigability when 𝑂𝑃𝑇 is Large

◼ However, as 𝑂𝑃𝑇 approaches 𝑛, the previous algorithm 
degenerates to the baseline 𝑂(𝑛3) time algorithm. 

◼ Can we beat the baseline algorithm when 𝑂𝑃𝑇 is large?

◼ Yes, if we settle for a bicriteria-approximation! 
◼ We will design a solution to 𝛼-SNP and compare its 

performance to an optimal solution to 2𝛼-SNP.
◼ We will refer to this problem as (𝛼, 2𝛼)-SNP.

Result 5 [K, Padaki, Waingarten ’25]
There is an ෨𝑂 𝑛𝜔  time algorithm for 𝑂(ln 𝑛)-approximation 
to (𝛼, 2𝛼)-SNP. 



Bicriteria Navigability via Matrix Multiplication

◼ The set cover approach to 𝛼-SNP iteratively builds a graph 
𝐺(𝑃, 𝐸) using two steps repeatedly: 
◼ Identify pairs 𝑠, 𝑡 that do not yet satisfy 𝛼-navigability in 𝐺(𝑃, 𝐸). 
◼ Greedily add edges (sets) that take care of many unsatisfied pairs.

◼ Both tasks are bottleneck when max degree is large.
◼ In particular, even verifying if the current solution is 

feasible requires checking:
           ∀𝑠 ≠ 𝑡 ∈ 𝑃, and 𝑠, 𝑢 ∈ 𝐸 if 𝑑 𝑢, 𝑡 < 𝑑 𝑠, 𝑡 /𝛼.
◼ Takes 𝑂(𝑛2 ⋅ deg 𝐺 ) time: becomes 𝑂(𝑛3) as deg 𝐺 →  𝑛. 

Can we at least speed up verification?



Batch Verification of 𝛼-Navigability 

◼ Suppose 𝑑 𝑠, 𝑡 = 𝑟, and we want to verify if it is covered.
◼ Define matrices 𝐴, 𝐵𝑟 ∈ {0,1}𝑛 × 𝑛 as below:

◼ 𝐴 𝑠, 𝑢 = 1 iff 𝑠, 𝑢 ∈ 𝐸 .               (Adjacency in 𝐺)

◼ 𝐵𝑟 𝑢, 𝑡 = 1 iff  𝑑 𝑢, 𝑡 < 𝑑 𝑠, 𝑡 /𝛼. (Small distances in 𝑃)

◼ Then the pair 𝑠, 𝑡 is covered in 𝐺 iff 
  𝐴 ⋅ 𝐵𝑟 𝑠, 𝑡 ≠ 0 .

◼ So verification for all pairs 𝑠, 𝑡 at distance 𝑟 can be done by 
a single matrix multiplication. 

◼ We can group distances into geometric ranges and verify  

෨𝑂(
ln Δ

𝜖
) distinct distance scales. 

◼ Thus (approximate) verification can be done in ෨𝑂 𝑛𝜔  time. 



Batch Verification to 𝛼-Navigability 

◼ Let 𝐾2𝛼 be the optimal max degree in a (2𝛼)-navigable 
graph on 𝑃.

Lemma: If each vertex randomly samples 𝐾2𝛼 edges to its 
uncovered neighbors, then w.h.p. total number of pairs 
violating 𝛼–navigability constraint reduces by an 𝑂(1) factor.

◼ So repeating the verification + random sampling 𝑂(ln 𝑛) 
times gives the desired bicriteria result.



From Batch Verification to 𝛼-Navigability 

Lemma: If each vertex randomly samples 𝐾2𝛼 edges to its 
uncovered neighbors, then w.h.p. total number of pairs 
violating 𝛼–navigability constraint reduces by an 𝑂(1) factor.

◼ Fix source 𝑠, and an edge (𝑠, 𝑢), that covers 2𝛼–navigability 
constraints from 𝑠 to points 𝑦1, 𝑦2, … , 𝑦𝑞, arranged in 

increasing order of distance from 𝑠.
◼ Then for any 𝑎 ≤ 𝑞/2 and 𝑏 > 𝑞/2, we have

     𝑑 𝑦𝑎 , 𝑦𝑏 ≤  𝑑 𝑦𝑎 , 𝑢 + 𝑑 𝑢, 𝑦𝑏 ≤
𝑑 𝑠,𝑦𝑎

2𝛼
+

𝑑 𝑠,𝑦𝑏

2𝛼
≤

𝑑 𝑠,𝑦𝑏

𝛼

◼ So every vertex in first half can 𝛼–cover every vertex in 
second half! 



Concluding Remarks

◼ We showed the following:

◼ 𝛼-SNP is equivalent to set cover and hence Θ ln 𝑛 -hard 
to approximate.

◼ 𝑂(ln 𝑛)-approximation for 𝛼-SNP in ෨𝑂(𝑛2⋅ 𝑂𝑃𝑇) time, 
and Ω 𝑛2  time needed even when 𝑂𝑃𝑇 = 𝑂(1).

◼ 𝑂(ln 𝑛)-approximation for (𝛼, 2𝛼)-SNP in ෨𝑂 𝑛𝜔  time. 

◼ Parallel work by [Conway et. al. ’25] gives stronger version 
of some of our results:

◼ 𝑂(ln 𝑛)-approximation for 1-SNP in ෨𝑂(𝑛2) time.

◼ 𝑂(ln 𝑛)-approximation for 𝛼-SNP in ෨𝑂(𝑛2.5) time.



Thank you !
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