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Yusuke Matsui

✓ Computer vision
✓ Data structure + Machine Learning

http://yusukematsui.me

Lecturer (Assistant Professor), the University of Tokyo, Japan

@utokyo_bunny @matsui528

Diverse nearest neighbor search
[Matsui, CVPR 25]

ML-enhanced Sorting
[Sato & Matsui, TMLR 25]

ML-enhanced Bloom Filter
[Sato & Matsui, NeurIPS 23]
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➢ Organized the 1st workshop on 
Vector Databases at ICML 2025

➢ Planning the 2nd edition in 2026
➢ Forum for NN researchers from 

various fields
➢ Welcome your submissions!

The best paper was a theory paper!
H. Xu, P. Indyk, S. Silwal, “Bi-metric Framework for 
Efficient Nearest Neighbor Search”

Faiss CAGRA

DiskANN
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➢𝑁 𝐷-dim database vectors: 𝒙𝑛 𝑛=1
𝑁

Nearest Neighbor Search; NN
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➢𝑁 𝐷-dim database vectors: 𝒙𝑛 𝑛=1
𝑁

➢Given a query 𝒒, find the closest vector from the database
➢One of the fundamental problems in computer science
➢Solution: linear scan, 𝑂 𝑁𝐷 , slow

Nearest Neighbor Search; NN
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Approximate Nearest Neighbor Search; ANN

➢Faster search
➢Don’t necessarily have to be exact neighbors
➢Trade off: runtime, accuracy, and memory-consumption
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Why NN/ANN?

➢ NN/ANN is an interesting research area because:
✓ it's a pure theory (yes, this is FOCS WS!)
✓ at the same time, it is directly used in applications,

e.g., Vector DBs

➢ Several research areas (CV, NLP, DB, ...)

➢ Because of RAG and Vector DB, ANN has
become popular more and more
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This talk

➢ Reorganized and expanded version of my previous tutorials 
of CVPR2020 and CVPR2023

➢ See the original tutorials for more detailed contents

➢ CVPR 2020 Tutorial on Image Retrieval in the Wild
➢ Y. Matsui, “Billion-scale Approximate Nearest Neighbor Search”
➢ https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-

scale-approximate-nearest-neighbor-search 

➢ CVPR 2023 Tutorial on Neural Search in Action
➢ Y. Matsui, “Theory and Applications of Graph-based Search”
➢ https://speakerdeck.com/matsui_528/cvpr23-tutorial-theory-and-

applications-of-graph-based-search 
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1. History from an applications perspective

2. Importance of implementation:
nearest neighbor search in faiss

3. Basics of modern baseline: graph-based search

Outline
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What tasks has ANN been used for?

2000 2010 2020

Computer Vision (CV):
SIFT + BoF

CV & NLP:
CLIP multimodal search

CV:
Image search Large Language Models:

Retrieval Augmented Generation (RAG)
Natural Language Processing (NLP) & 
Information Retrieval:
Text search (Dense? Sparse?)

Machine Learning:
kNN classification, metric learning

Database:
VectorDB
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SIFT (local feature) + BoF (Bag-of-features) + SVM
https://jp.mathworks.com/help/vision/ug/image-classification-with-bag-of-visual-words.html

𝒙 ∈ ℝ128

𝑘∗ = argmin
𝑘∈ 1,…,5

𝒙 − 𝒄𝑘 2
2

➢ To compute BoF fast, several practical ANN technologies have been invented in the CV area
in the 2000s – 2010s… E.g.: Product Quantization

➢ Good old days…. 

𝒄1 𝒄2

Extract a local patch

Given codewords 𝒄𝑘 ,
find the closest one

Create a histogram, run SVM, 
recognize an image…
➢ This is nearest neighbor search!
➢ 𝐾 is 103 to 104

➢ Must be in memory
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Image Search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image Search
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Image Search
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ResNet

➢ Use a pre-trained CNN model (e.g., ResNet) as a feature extractor
➢ Represent an image as a high-dimensional vector
➢ Image-retrieval by nearest neighbor search

ResNet
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What tasks has ANN been used for?

2000 2010 2020

CV & NLP:
CLIP multimodal search

CV:
Image search

Natural Language Processing (NLP) & 
Information Retrieval:
Text search (Dense? Sparse?)

Machine Learning:
kNN classification, metric learning

Database:
VectorDB

Large Language Models:
Retrieval Augmented Generation (RAG)

Computer Vision (CV):
SIFT + BoF
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Text Search (Dense and/or Sparse)
Doc1: “The cat sleeps on chairs”
Doc2: “A quick blue fox runs”
Doc3: “The cat sits near window”
…

Query: “fox” search

𝒒fox Search 𝒙2argmin 𝒒fox − 𝒙𝑛 2
2

𝒙1, 𝒙2, … , 𝒙𝑁

Term ID

the 1, 3

fox 2

cat 2, 3

Blue 2

… …

“fox” Doc2

Dense search

Sparse search

➢ How to design embedding? BERT and its successors…

➢ Classical “matching” and its extensions
➢ TF-IDF, BM25, SPLADE…

➢ Dense search: accurate
➢ Sparse search: fast
➢ Combining two approaches is a 

hot topic in information retrieval 
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https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

kNN classification
Label: dogLabel: cat

➢ The most straightforward approach for classification

➢ Given a query, find the closest sample from training 
data, and report its label

➢ Although super simple, it’s actually effective if the 
embedding is good and #samples are large

➢ We can just run ANN search

➢ Complex ML -> Simple but large-scale search

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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CLIP multimodal search
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https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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CLIP multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

𝒙1, 𝒙2, 

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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CLIP multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

𝒙1, 𝒙2, … , 𝒙𝑁

…

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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CLIP multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

0.23
3.15
0.65
1.43

Search
𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

“Two dogs playing 
in the snow”

https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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CLIP multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs playing 
in the snow”

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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CLIP multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs playing 
in the snow”

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

➢ CLIP enables us to compare images and texts
➢ Encoder determines the upper bound of the accuracy of the system
➢ ANN determines a trade-off between accuracy, runtime, and memory

https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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What tasks has ANN been used for?

2000 2010 2020

CV & NLP:
CLIP multimodal search

CV:
Image search

Natural Language Processing (NLP) & 
Information Retrieval:
Text search (Dense? Sparse?)

Machine Learning:
kNN classification, metric learning

Database:
VectorDB

Large Language Models:
Retrieval Augmented Generation (RAG)

Computer Vision (CV):
SIFT + BoF
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RAG: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“I'm sorry, but as an AI language 
model, I don't have information 
about the future events.”

Ask



https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida\n\n==Personal…”

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

𝒙1, 

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

𝒙1, 𝒙2, 

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

0.23
3.15
0.65
1.43

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT


43

RAG: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

Search

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

“List of 2022 Winter 
Olympics medal winners…”

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

Search

Update

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

“Who won curling gold at the 
2022 Winter Olympics?
Use the bellow articles: List of 
2022 Winter Olympics medal 
winners…”

“List of 2022 Winter 
Olympics medal winners…”

ChatGPT 3.5 
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

“Niklas Edin, Oskar 
Eriksson, …”

Search

Update
☺

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

“Who won curling gold at the 
2022 Winter Olympics?
Use the bellow articles: List of 
2022 Winter Olympics medal 
winners…”

“List of 2022 Winter 
Olympics medal winners…”

ChatGPT 3.5 
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT 

"Who won curling 
gold at the 2022 
Winter Olympics?"

“Niklas Edin, Oskar 
Eriksson, …”

Search

Update
☺

“Damir Sharipzyanov\n\n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida\n\n==Personal…”
Te

xt
En

co
d

er

“Who won curling gold at the 
2022 Winter Olympics?
Use the bellow articles: List of 
2022 Winter Olympics medal 
winners…”

“List of 2022 Winter 
Olympics medal winners…”

ChatGPT 3.5 
(trained in 2021)

Embedding+ANN is the current easiest 
way to provide knowledge to LLM

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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What tasks has ANN been used for?

2000 2010 2020

CV & NLP:
CLIP multimodal search

CV:
Image search

Natural Language Processing (NLP) & 
Information Retrieval:
Text search (Dense? Sparse?)

Machine Learning:
kNN classification, metric learning

Database:
VectorDB

Large Language Models:
Retrieval Augmented Generation (RAG)

Computer Vision (CV):
SIFT + BoF
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What is Vector DB?

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

faiss

NMSLIB

hnswlib
Vald

ScaNN

jina
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Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Weaviate

Vertex AI 
Matching Engine

NMSLIB

hnswlib
Vald

ScaNN

jina

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

faiss

One library may implement 
multiple algorithms

 “I benchmarked faiss”
☺ “I benchmarked PQ in faiss”
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Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Weaviate

Vertex AI 
Matching Engine

Vald

ScaNN

jina

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

faiss

NMSLIB

hnswlib

One algorithm may be 
implemented in multiple libraries
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Milvus

Pinecone

Qdrant

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

faiss

NMSLIB

hnswlib
Vald

jina

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

ScaNN

Often, one library = one algorithm
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Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Vertex AI 
Matching Engine

NMSLIB

Vald

ScaNN

jina

Weaviate

Milvus

faiss

hnswlib

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

One service may use some libraries

… or re-implement 
algorithms from 
scratch (e.g., by Go)
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What is Vector DB?

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

faiss

NMSLIB

hnswlib
Vald

ScaNN

jina

➢ Recently, the DB community has been the 
most active

➢ The CV community has settled down a bit  
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1. History from an applications perspective

2. Importance of implementation:
nearest neighbor search in faiss

3. Basics of modern baseline: graph-based search

Outline



0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

𝒒 ∈ ℝ𝐷 𝒙74

argmin
𝑛∈ 1,2,…,𝑁

𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Nearest Neighbor Search
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➢Before trying ANN, we should try NN
➢Introduce a naïve implementation
➢Introduce a fast implementation: Faiss library
➢Experience the drastic difference between the two implementations 



Task：Given 𝒒 ∈ 𝒬 and 𝒙 ∈ 𝒳, compute 𝒒 − 𝒙 2
2

56

𝑀 𝐷-dim query vectors 𝒬 = 𝒒1, 𝒒2, … , 𝒒𝑀

𝑁 𝐷-dim database vectors    𝒳 = 𝒙1, 𝒙2, … , 𝒙𝑁      𝑀 ≪ 𝑁



𝑀 𝐷-dim query vectors 𝒬 = 𝒒1, 𝒒2, … , 𝒒𝑀

𝑁 𝐷-dim database vectors    𝒳 = 𝒙1, 𝒙2, … , 𝒙𝑁      𝑀 ≪ 𝑁

Task：Given 𝒒 ∈ 𝒬 and 𝒙 ∈ 𝒳, compute 𝒒 − 𝒙 2
2

parfor q in Q:
  for x in X:
    l2sqr(q, x)  
   

def l2sqr(q, x):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (q[d] – x[d])**2
  return diff

Naïve impl.
Parallelize 
query-side

Select min by heap, 
but omit it now
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Task：Given 𝒒 ∈ 𝒬 and 𝒙 ∈ 𝒳, compute 𝒒 − 𝒙 2
2

parfor q in Q:
  for x in X:
    l2sqr(q, x)  
   

def l2sqr(q, x):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (q[d] – x[d])**2
  return diff

Naïve impl.
Parallelize 
query-side

Select min by heap, 
but omit it now

faiss impl.

if 𝑀 < 20：

 compute 𝒒 − 𝒙 2
2 by SIMD

else：

 compute 𝒒 − 𝒙 2
2 = 𝒒 2

2 − 2𝒒⊤𝒙 + 𝒙 2
2 by BLAS 58

𝑀 𝐷-dim query vectors 𝒬 = 𝒒1, 𝒒2, … , 𝒒𝑀

𝑁 𝐷-dim database vectors    𝒳 = 𝒙1, 𝒙2, … , 𝒙𝑁      𝑀 ≪ 𝑁

Disclaimer: the code used in the explanation is from several years ago and is not up to date.



Task：Given 𝒒 ∈ 𝒬 and 𝒙 ∈ 𝒳, compute 𝒒 − 𝒙 2
2

parfor q in Q:
  for x in X:
    l2sqr(q, x)  
   

def l2sqr(q, x):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (q[d] – x[d])**2
  return diff

Naïve impl.
Parallelize 
query-side

Select min by heap, 
but omit it now

faiss impl.

if 𝑀 < 20：

 compute 𝒒 − 𝒙 2
2 by SIMD

else：

 compute 𝒒 − 𝒙 2
2 = 𝒒 2

2 − 2𝒒⊤𝒙 + 𝒙 2
2 by BLAS 59

𝑀 𝐷-dim query vectors 𝒬 = 𝒒1, 𝒒2, … , 𝒒𝑀

𝑁 𝐷-dim database vectors    𝒳 = 𝒙1, 𝒙2, … , 𝒙𝑁      𝑀 ≪ 𝑁

Disclaimer: the code used in the explanation is from several years ago and is not up to date.



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

𝒙 − 𝒚 2
2 by SIMD Ref.Rename variables for the 

sake of explanation

x

y

D=31

float: 32bit

60

def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

➢ 256bit SIMD Register
➢ Process eight floats at oncefloat: 32bit

61

def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31



float: 32bit

float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 256bit SIMD Register
➢ Process eight floats at once



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

a_m_b1

⊖⊖⊖⊖ ⊖⊖ ⊖⊖

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 256bit SIMD Register
➢ Process eight floats at once



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

a_m_b1

msum1

a_m_b1

⊖⊖⊖⊖ ⊖⊖ ⊖⊖

⊗⊗⊗⊗⊗⊗⊗⊗

+=

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 256bit SIMD Register
➢ Process eight floats at once



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

msum1 +=

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 256bit SIMD Register
➢ Process eight floats at once



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

a_m_b1

⊖⊖⊖⊖ ⊖⊖ ⊖⊖

msum1 +=

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 256bit SIMD Register
➢ Process eight floats at once



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

a_m_b1

msum1

a_m_b1

⊖⊖⊖⊖ ⊖⊖ ⊖⊖

⊗⊗⊗⊗⊗⊗⊗⊗

+=

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 256bit SIMD Register
➢ Process eight floats at once



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

a_m_b1

msum1

a_m_b1

msum2

⊖⊖⊖⊖ ⊖⊖ ⊖⊖

⊗⊗⊗⊗⊗⊗⊗⊗

⊕⊕⊕⊕

➢ 128bit SIMD Register

+=

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 256bit SIMD Register
➢ Process eight floats at once



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

mx my

a_m_b1 a_m_b1

msum2

⊖⊖⊖⊖

⊗⊗⊗⊗

+=

➢ 128bit SIMD Register

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

0 0 0mx 0 0 0my

a_m_b1 a_m_b1

⊖⊖⊖⊖

⊗⊗⊗⊗

msum2 +=

The rest

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 128bit SIMD Register



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

0 0 0mx 0 0 0my

a_m_b1 a_m_b1

⊖⊖⊖⊖

⊗⊗⊗⊗

⊕ ⊕

⊕

msum2 +=

Result

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 128bit SIMD Register

The rest



float fvec_L2sqr (const float * x,
const float * y,
size_t d)

{
__m256 msum1 = _mm256_setzero_ps();

while (d >= 8) {
__m256 mx = _mm256_loadu_ps (x); x += 8;
__m256 my = _mm256_loadu_ps (y); y += 8;
const __m256 a_m_b1 = mx - my;
msum1 += a_m_b1 * a_m_b1;
d -= 8;

}

__m128 msum2 = _mm256_extractf128_ps(msum1, 1);
msum2 += _mm256_extractf128_ps(msum1, 0);

if (d >= 4) {
__m128 mx = _mm_loadu_ps (x); x += 4;
__m128 my = _mm_loadu_ps (y); y += 4;
const __m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;
d -= 4;

}

if (d > 0) {
__m128 mx = masked_read (d, x);
__m128 my = masked_read (d, y);
__m128 a_m_b1 = mx - my;
msum2 += a_m_b1 * a_m_b1;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);
return  _mm_cvtss_f32 (msum2);

}

x

y

0 0 0mx 0 0 0my

a_m_b1 a_m_b1

⊖⊖⊖⊖

⊗⊗⊗⊗

⊕ ⊕

⊕

msum2 +=

Result

float: 32bit
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def l2sqr(x, y):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (x[d] – y[d])**2
  return diff

𝒙 − 𝒚 2
2 by SIMD Rename variables for the 

sake of explanation
Ref.

D=31

➢ 128bit SIMD Register

The rest

➢ SIMD codes of faiss are simple and easy to read
➢ Being able to read SIMD codes comes in handy 

sometimes; why this impl is super fast
➢ Another example of SIMD L2sqr from HNSW:

https://github.com/nmslib/hnswlib/blob/master/hnswlib/space_l2.h

https://github.com/nmslib/hnswlib/blob/master/hnswlib/space_l2.h


𝑀 𝐷-dim query vectors 𝒬 = 𝒒1, 𝒒2, … , 𝒒𝑀

𝑁 𝐷-dim database vectors    𝒳 = 𝒙1, 𝒙2, … , 𝒙𝑁

Task：Given 𝒒 ∈ 𝒬 and 𝒙 ∈ 𝒳, compute 𝒒 − 𝒙 2
2

parfor q in Q:
  for x in X:
    l2sqr(q, x)  
   

def l2sqr(q, x):
  diff = 0.0
  for (d = 0; d < D; ++d):
    diff += (q[d] – x[d])**2
  return diff

Naïve impl.
Parallelize 
query-side

Select min by heap, 
but omit it now

faiss impl.

if 𝑀 < 20：

 compute 𝒒 − 𝒙 2
2 by SIMD

else：

 compute 𝒒 − 𝒙 2
2 = 𝒒 2

2 − 2𝒒⊤𝒙 + 𝒙 2
2 by BLAS 73



Compute 𝒒 − 𝒙 2
2 = 𝒒 2

2 − 2𝒒⊤𝒙 + 𝒙 2
2 with BLAS

# Compute tables
q_norms = norms(Q)    # 𝒒1 2

2, 𝒒2 2
2, … , 𝒒𝑀 2

2

x_norms = norms(X)    # 𝒙1 2
2, 𝒙2 2

2, … , 𝒙𝑁 2
2

ip = sgemm_(Q, X, …)  # 𝑄⊤𝑋

# Scan and sum
parfor (m = 0; m < M; ++m):
  for (n = 0; n < N; ++n):
    dist = q_norms[m] + x_norms[n] – 2 * ip[m][n] 

Stack 𝑀 𝐷-dim query vectors to a 𝐷 × 𝑀 matrix:        𝑄 = 𝒒1, 𝒒2, … , 𝒒𝑀 ∈ ℝ𝐷×𝑀

Stack 𝑁 𝐷-dim database vectors to a 𝐷 × 𝑁 matrix: 𝑋 = 𝒙1, 𝒙2, … , 𝒙𝑁 ∈ ℝ𝐷×𝑁

SIMD-accelerated function

➢ Matrix multiplication by BLAS
➢ Dominant if 𝑄 and 𝑋 are large
➢ The difference of the background matters:
✓ Intel MKL is 30% faster than OpenBLAS

74𝒒𝑚 2
2 𝒙𝑛 2

2 𝑄⊤𝑋 𝑚𝑛𝒒𝑚 − 𝒙𝑛 2
2



NN in GPU (faiss-gpu) is 10x faster than NN in CPU (faiss-cpu)

➢NN-GPU always compute 𝒒 2
2 − 2𝒒⊤𝒙 + 𝒙 2

2

➢ k-means for 1M vectors (D=256, K=20000)
✓ 11 min on CPU
✓ 55 sec on 1 Pascal-class P100 GPU (float32 math)
✓ 34 sec on 1 Pascal-class P100 GPU (float16 math)
✓ 21 sec on 4 Pascal-class P100 GPUs (float32 math)
✓ 16 sec on 4 Pascal-class P100 GPUs (float16 math)

➢ If GPU is available and its memory is enough, try GPU-NN
➢ The behavior is little bit different (e.g., a restriction for top-k)

Benchmark: https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

x10 faster

75

https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
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1. History from an applications perspective

2. Importance of implementation:
nearest neighbor search in faiss

3. Basics of modern baseline: graph-based search

Outline
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Graph search

➢ De facto standard if all data can be loaded on memory
➢ Fast and accurate for real-world data
➢ Important for billion-scale situation as well
✓ Graph-search is a building block for billion-scale systems

Images are from [Malkov+, Information Systems, 2013]

➢ Traverse graph towards the query
➢ Seems intuitive, but not so much 

easy to understand
➢ Review the algorithm carefully
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Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current 

graph incrementally
➢ Iteratively refine an initial graph
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Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current 

graph incrementally
➢ Iteratively refine an initial graph
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Images are from [Malkov+, Information Systems, 2013]

➢Each node is a database vector

𝒙13

Graph of 
𝒙1, … , 𝒙90

Construction: incremental approach



81

➢Each node is a database vector
➢Given a new database vector, 

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach
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➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach
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➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach
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➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach

➢ Prune edges if some node have too many edges
➢ Several strategies (e.g., RNG-pruning)
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Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current 

graph incrementally
➢ Iteratively refine an initial graph
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Construction: refinement approach Images are from [Subramanya+, NeruIPS 2019]

➢ Create an initial graph (e.g., random graph or approx. kNN graph)
➢ Refine it iteratively (pruning/adding edges)
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Construction: refinement approach Images are from [Subramanya+, NeruIPS 2019]

➢ Create an initial graph (e.g., random graph or approx. kNN graph)
➢ Refine it iteratively (pruning/adding edges)

➢Need to be moderately sparse (otherwise the 
graph traverse is slow)

➢ Some “long” edges are required for shortcut
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Search Images are from [Malkov+, Information Systems, 2013]
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N M

➢ Given a query vector

Candidates
(size = 3)

C
lo

se to
 th

e q
u

ery

Name each node for 
explanation
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ Given a query vector
➢ Start from an entry point (e.g.,      )
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(size = 3)

C
lo

se to
 th

e q
u

ery

M



90

Search Images are from [Malkov+, Information Systems, 2013]
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➢ Given a query vector
➢ Start from an entry point (e.g.,      ). Record the distance to q.
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(size = 3)
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M

M 23.1
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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1st iteration
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ Pick up the unchecked best candidate (     ). Check it. 
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ Pick up the unchecked best candidate (     ). Check it. 
➢ Find the connected points.

Best
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check!
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ Pick up the unchecked best candidate (     ). Check it. 
➢ Find the connected points.
➢ Record the distances to q.
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check!
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se to
 th

e q
u

ery

N

J 11.1

N 15.3

K 19.4

2nd iteration



103

Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ i.e., search path
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➢ All candidates are checked. Finish.
➢ Here,      is the closet to the query (     )C

Final output 1: Candidates
➢ You can pick up topk results

Final output 2: Checked items
➢ i.e., search path

Final output 3: Visit flag
➢ For each item, visited or not 
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Observation: runtime

➢ Item comparison takes time; 𝑂 𝐷

➢ The overall runtime ~ #item_comparison
∼ length_of_search_path * average_outdegree

𝒒 ∈ ℝ𝐷

𝒙13 ∈ ℝ𝐷

start

query

start

query

start

query

1st path 2nd path 3rd path

2.1

1.9

outdegree = 1 outdegree = 2 outdegree = 2

#item_comparison = 3 * (1 + 2 + 2)/3 = 5

2.4



143

Observation: runtime

➢ Item comparison takes time; 𝑂 𝐷

➢ The overall runtime ~ #item_comparison
∼ length_of_search_path * average_outdegree

𝒒 ∈ ℝ𝐷

𝒙13 ∈ ℝ𝐷

start

query

start

query

start

query

1st path 2nd path 3rd path

2.1

1.9

outdegree = 1 outdegree = 2 outdegree = 2

#item_comparison = 3 * (1 + 2 + 2)/3 = 5

2.4

To accelerate the search,
(1) How to shorten the search path?
➢ E.g., long edge (shortcut), hierarchical structure 

(2) How to sparsify the graph?
➢ E.g., deleting redundant edges
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A

D

C

B

query

Observation: candidate size

E

start
Candidates
(size = 1)

C

A

D

C

B

query

E

start
Candidates
(size = 3)

C

D

E

size = 1: Greedy search size > 1: Beam search

➢ Larger candidate size, better but slower results
➢ Online parameter to control the trade-off
➢ Called “ef” in HNSW 

Fast. But stuck in a local minimum

Slow. But find a better solution
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Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]
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Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Sort the array explicitly

Candidates are stored 
in a set

Candidates are stored in a 
heap; automatically sorted

Candidates are stored 
in an array

When need to sort, 
say “closest L points”
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Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Just “check” Checked items are stored in a set (“visit” in 
this code means “check” in our notation)
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Visited item are simply said to be “visited”; implying 
an additional hidden data structure (array)

Visited items are 
stored in a set
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Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Termination condition??
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Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

My explanation was based on NSG, but with slight modifications for simplicity:
➢ Candidates are stored in an automatically-sorted array
➢ Termination condition is “all candidates are checked”
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Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Formal (?) definition would be helpful for everyone 
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1. History from an applications perspective

2. Importance of implementation

3. Basics of modern baseline

Outline
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