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The 1st Workshop on Vector Databases (VecDB)

VecDB@ICML2025, 18 July 2025, Vancouver, Canada
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Tokyo) of Copenhagen) (Carnegie Mellon University) (Microsoft) E

» Organized the 15t workshop on
Vector Databases at ICML 2025

> Planning the 2" edition in 2026

» Forum for NN researchers from
various fields

» Welcome your submissions!
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The best paper was a theory paper!
H. Xu, P. Indyk, S. Silwal, “Bi-metric Framework for
Efficient Nearest Neighbor Search”




Nearest Neighbor Search; NN
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>N D-dim database vectors: {x,}}_,



Nearest Neighbor Search; NN

Result
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>N D-dim database vectors: {x,}}_,

»Given a query ¢, find the closest vector from the database
»0One of the fundamental problems in computer science
»Solution: linear scan, O(ND), slow (x



Approximate Nearest Neighbor Search; ANN

Result

0.23 |
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» Faster search
»Don’t necessarily have to be exact neighbors
» Trade off: runtime, accuracy, and memory-consumption



Why NN/ANN?

» NN/ANN is an interesting research area because:

v’ it's a pure theory (yes, this is FOCS WS!)
v at the same time, it is directly used in applications,
M

e.g., Vector DBs

» Several research areas (CV, NLP, DB, ...)
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» Because of RAG and Vector DB, ANN has
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This talk

» Reorganized and expanded version of my previous tutorials

of CVPR2020 and CVPR2023

» See the original tutorials for more detailed contents

CVPR 2020 Tutorial on Image Retrieval in the Wild @VPRVIRTUAL

Billion-scale Approximate
Nearest Neighbor Search

Yusuke Matsui
The University of Tokyo

9 4

» CVPR 2020 Tutorial on Image Retrieval in the Wild

» Y. Matsui, “Billion-scale Approximate Nearest Neighbor Search”

» https://speakerdeck.com/matsui 528/cvpr20-tutorial-billion-
scale-approximate-nearest-neighbor-search

CVPR 2023 Tutorial on Neural Search in Action

Theory and Applications of
Graph-based Search

Yusuke Matsui
The University of Tokyo

Y

» CVPR 2023 Tutorial on Neural Search in Action
» Y. Matsui, “Theory and Applications of Graph-based Search”
» https://speakerdeck.com/matsui 528/cvpr23-tutorial-theory-and

applications-of-graph-based-search
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Outline

1. History from an applications perspective

2. Importance of implementation:
nearest neighbor search in faiss

3. Basics of modern baseline: graph-based search



Outline

2. Importance of implementation:
nearest neighbor search in faiss

3. Basics of modern baseline: graph-based search
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What tasks has ANN been used for?

2000 2010 2020

-+t

Computer Vision (CV): CV & NLP:
SIFT + BoF CLIP multimodal search

CV:

Image search Large Language Models:
Retrieval Augmented Generation (RAG)

Natural Language Processing (NLP) &
Information Retrieval: Database:
Text search (Dense? Sparse?) VectorDB

Machine Learning:
kNN classification, metric learning

11



What tasks has ANN been used for?

2000 2010 2020

S e e —

Computer Vision (CV): - CV & :
SIFT + BoF CLIP multimodal search

CV:
Image search Large Language Models:
Retrieval Augmented Generation (RAG)

Database:

Text search (Dense? Sparse?) VectorDB

kNN classification, metric learning
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SIFT (local feature) + BoF (Bag-of-features) + SVM

https://jp.mathworks.com/help/vision/ug/image-classification-with-bag-of-visual-words.html

image approximate nearest neighbor feature histogram feature vector
13

=

u

word count

12345+
visual word index

Given codewords {c}}, Create a histogram, run SVM,
X € ]R128 find the closest one recognize an image...
k* = argmin”x — Cy, ”% » This is nearest neighbor search!

Extract a local patch
ke{l,...,5} > K is 103 to 10*

» Must be in memory

» To compute BoF fast, several practical ANN technologies have been invented in the CV area
in the 2000s — 2010s... E.g.: Product Quantization
» Good old days.... @ 13



What tasks has ANN been used for?

2000 2010 2020

L B e

CV & :
CLIP multimodal search

Computer Vision (CV):

SIFT + BoF

CV:
- Large Language Models:
Retrieval Augmented Generation (RAG)

Database:

VectorDB

Text search (Dense? Sparse?)

kNN classification, metric learning
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Image Search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image Search

ResNet

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image Search

ResNet

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image Search

ResNet

4/
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Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image Search

ResNet
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Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image Sea rch

ResNet
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Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image Search
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ResNet
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3.15 oL aregmin||g — x,,||3
0.65 g q nii2
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» Use a pre-trained CNN model (e.g., ResNet) as a feature extractor
» Represent an image as a high-dimensional vector
» Image-retrieval by nearest neighbor search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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What tasks has ANN been used for?

2000 2010 2020

L B e

Computer Vision (CV): CV & :
SIFT + BoF CLIP multimodal search

CV:

Image search Large Language Models:
Retrieval Augmented Generation (RAG)

Information Retrieval: - Database:
Text search (Dense? Sparse?) VectorDB

kNN classification, metric learning
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Text Search (Dense and/or Sparse)

Docl: “The cat sleeps on chairs”

Query: “fox” m Doc2: “A quick blue fox runs”

Doc3: “The cat sits near window”

Dense search

9tox

- 2
) (| oo,

» How to design embedding? BERT and its successors...

Sparse search

» Classical “matching” and its extensions
the 1,3 » TF-IDF, BM25, SPLADE...

“fox” mmmmp fox 2 . AIOIAN > Dense search: accurate

cat 2,3 » Sparse search: fast
Blue 2

» Combining two approaches is a
hot topic in information retrieval
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What tasks has ANN been used for?

2000 2010 2020

L B e

Computer Vision (CV): CV & :
SIFT + BoF CLIP multimodal search

CV:

Image search Large Language Models:
Retrieval Augmented Generation (RAG)

Information Retrieval: Database:
Text search (Dense? Sparse?) VectorDB

kNN classification, metric learning '
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kNN classification

Label: dog
A A

https://en.wikipedia.org/wiki/K-nearest_neighbors algorithm

» The most straightforward approach for classification

» Given a query, find the closest sample from training
data, and report its label

» Although super simple, it’s actually effective if the
embedding is good and #samples are large

» We can just run ANN search

» Complex ML -> Simple but large-scale search

25
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What tasks has ANN been used for?

2000 2010 2020

-+t

- CV & ;
CLIP multimodal search
CV:
Image search Large Language Models:
Retrieval Augmented Generation (RAG)
:
Text search (Dense? Sparse?) VectorDB

Computer Vision (CV):
SIFT + BoF

kNN classification, metric learning

26



CLIP multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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CLIP multimodal search

CLIP Image
Encoder

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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CLIP multimodal searc__h

CLIP Image

Encoder

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

29


https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

CLIP multimodal searc_h

CLIP Image
Encoder

4/

L F

X1, X9, ey XN

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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CLIP multimodal searc_h

“Two dogs playing
in the snow”

CLIP Text
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Image are from: https://github.com/haltakov/natural-language-image-search

Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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A F . > 3.25
argmin||q — x,,||5 07

3.15
0.65 X1, X2, ) XN

11.43. 11.68.

» CLIP enables us to compare images and texts
» Encoder determines the upper bound of the accuracy of the system
» ANN determines a trade-off between accuracy, runtime, and memory

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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What tasks has ANN been used for?

2000 2010 2020

L B e

Computer Vision (CV):
SIFT + BoF

CV & :
CLIP multimodal search
CV:
Image search - Large Language Models:
Retrieval Augmented Generation (RAG)

&

Information Retrieval:

Database:
VectorDB

Text search (Dense? Sparse?)

kNN classification, metric learning
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RAG: LLM

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 3 5



https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

RAG: LLM

"Who won curling “I'm sorry, but as an AI language
gold at the 2022 model, I don't have information
Winter Olympics?" about the future events.”

ChatGPT 3.5 @

(trained in 2021)

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 3 6
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RAG: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 3 7
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RAG: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida\n\n==Personal..”
@

y It
;""« *  “Lviv bid for the 2022 Winter..”
Q- W

Al

-

“Damir Sharipzyanov\n\n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 3 8
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RAG: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida\n\n==Personal..”

“Lviv bid for the 2022 Winter..”

“Damir Sharipzyanov\n\n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 3 9
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RAG: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida\n\n==Personal..”

‘= % “Lviv bid for the 2022 Winter..”
s n/‘ :
1.‘.? 1

“Damir Sharipzyanov\n\n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 40
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RAG: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida\n\n==Personal..”

“Lviv bid for the 2022 Winter..”

“Damir Sharipzyanov\n\n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 4 1
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RAG: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
Text (trained in 2021)

Encoder

0.23]
3.15
0.65

11.43]

“Chinami Yoshida\n\n==Personal..”

7 wo. \
f w % “Lviv bid for the 2022 Winter..”
b ¢

5 w
oA

“Damir Sharipzyanov\n\n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb

Icon credit: https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

Text

Encoder

0.23]
3.15
0.65

11.43]

! m.
R o 8
A

-
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Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb

“Chinami Yoshida\n\n==Personal..”

“Lviv bid for the 2022 Winter..”

“Damir Sharipzyanov\n\n=Career..”

ChatGPT 3.5
(trained in 2021)

argmin|lq — x, |3

Result
0.20]

3.25
0.72
11.68.

“List of 2022 Winter

Olympics medal winners..”

Icon credit: https://ja.wikipedia.org/wiki/ChatGPT
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RAG: LLM + embedding

“Who won curling gold at the
"Who won curling 2022 Winter Olympics?
gold at the 2022 Use the bellow articles: List of
Winter Olympics?" 2022 Winter Olympics medal
winners..”

ChatGPT 3.5
(trained in 2021)

Text

Encoder

Result
0.20]

3.25
0.72
11.68.

“List of 2022 Winter
Olympics medal winners..”

0.23]
3.15
0.65

11.43]

argmin|lq — x, |3

“Chinami Yoshida\n\n==Personal..”

\ “Lviv bid for the 2022 Winter..”
A o

y m - )
*‘ W 3
FQ

“Damir Sharipzyanov\n\n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 44
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RAG: LLM + embedding

“Who won curling gold at the

"Who won curling 2022 Winter Olympics? “Niklas Edin. Oskar
gold at the 2022 WIeEI> Use the bellow articles: List of . ,,, (:::)
Winter Olympics?" 2022 Winter Olympics medal EPlkSSOﬂ,

winners..”

ChatGPT 3.5
(trained in 2021)

Text

Encoder

Result
0.20]

3.25
0.72
11.68.

“List of 2022 Winter
Olympics medal winners..”

0.23]
3.15
0.65

11.43]

argmin|lq — x, |3

“Chinami Yoshida\n\n==Personal..”
y wo.
-f « % “Lviv bid for the 2022 Winter..”
b ¢ ‘

-

19
“Damir Sharipzyanov\n\n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 45
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RAG: LLM + embedding

“Who won curling gold at the

"Who won curling 2022 Winter Olympics? “Niklas Edin. Oskar
gold at the 2022 WIeEI> Use the bellow articles: List of . ,,, (:::)
Winter Olympics?" 2022 Winter Olympics medal Er'1ksson,

winners..”

ChatGPT 3.5
(trained in 2021)

Text

Encoder

Result
0.20]

3.25
0.72
11.68.

“List of 2022 Winter
Olympics medal winners..”

0.23]
3.15
0.65

11.43]

argmin|lq — x, |3

“Chinami Yoshida\n\n==Personal..”
@

“=™ & % “Lviv bid for the 2022 Winter..”
GROREC
1y

Embedding+ANN is the current easiest
way to provide knowledge to LLM

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb  lcon credit: https://ja.wikipedia.org/wiki/ChatGPT 46
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What tasks has ANN been used for?

2000 2010 2020

L B e

Computer Vision (CV): CV & :
SIFT + BoF CLIP multimodal search

CV:

Image search Large Language Models:
Retrieval Augmented Generation (RAG)

‘ Database:
VectorDB

Text search (Dense? Sparse?)

kNN classification, metric learning
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What is Vector DB?

Algorithm Library
» Scientific paper » Implementations of algorithms
» Math » Usually, a search function only

» Often, by researchers » By researchers, developers, etc

=

=

=
(o)

Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Service (e.g., vector DB)

» Library + (handling metadata,
serving, scaling, 10, CRUD, etc)
» Usually, by companies

[ Pinecone ]

=

[ Qdrant ]

)

[ Vald ] Vertex Al
Matching Engine

(o ) »



Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

One library may implement
multiple algorithms

@ “l benchmarked faiss”
© “l benchmarked PQ in faiss”




One algorithm may be
implemented in multiple libraries

faiss

Hierarchical Navigable
Small World (HNSW) NMSLIB
[Malkov+, TPAMI 2019]




Often, one library = one algorithm

ScaNN (4-bit PQ)
[Guo+, ICML 2020] \



One service may use some libraries

—\

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

... or re-implement
algorithms from
scratch (e.g., by Go)

Milvus




Service (e.g., vector DB)

» Library + (handling metadata,
serving, scaling, 10, CRUD, etc)
» Usually, by companies

» Recently, the DB community has been the

most active

53



Outline

1. History from an applications perspective

2. Importance of implementation:
nearest neighbor search in faiss

3. Basics of modern baseline: graph-based search

54



Nearest Neighbor Search

Result
0.23
315 - 2 T
o v x |m argmin uq I3
: 1) A2y ===y AN TLE{l 2,...N} 0.72
11.43 N A 1. 68
g € RP x, € RP

» Before trying ANN, we should try NN

»Introduce a naive implementation

»Introduce a fast implementation: Faiss library

» Experience the drastic difference between the two implementations
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M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5
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M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

diff = 0.0

for (d = 9; d < D; ++d):
diff += (q[d] - x[d])**2

return diff

parfor q in Q: Parallelize
for x in X: query-side

12sqr(q, X)ﬁ

Select min by heap,
but omit it now

57



M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor g in Q: ﬁ Parallelize

diff = 0.0 for x in X: query-side

for (d = @3 d < D3 ++d): lzsqr\(q’ X) Select min by heap,
diff += (q[d] - x[d])**2
return diff

Disclaimer: the code used in the explanation is from several years ago and is not up to date.
it M < 20 :
compute ||q — x||5 by SIMD
else .
compute ||q — x”z HqHz — Zq X + Hx\lz by BLAS 58

but omit it now




M D-dim query vectors Q=191.92 -, 9y}
N D-dim database vectors X = {x{,X,, ..., Xy} M KN

Task : Given g € Q and x € X, compute ||q — x||5

def 12sqgr(q, x): parfor q in Q: Parallelize
diff = 0.0 for x in X: ﬁ query-side
for (d = @; d < D; ++d): 12sqr(q, x) Select min by heap,
diff += (q[d] - x[d])**2 ‘i
return diff

but omit it now

Disclaimer: the code used in the explanation is from several years ago and is not up to date.
it M < 20 :
compute ||q — x||5 by SIMD
else .
compute ||q — x”z HqHz — Zq X + Hx\lz by BLAS 59



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

float fvec_L2sqr (const float * x, < > diff += (x[d] - y[d])**2
const float * vy, X return diff
size t d)
{
_ m256 msuml = _mm256_setzero ps(); )/

while (d >= 8) {
~ m256 mx = _mm256_loadu_ps (x); X += 8;

~ m256 my = _mm256_loadu_ps (y); y += 8;
const  m256 a_m_bl = mx - my;

msuml += a_m_bl * a_m_bil;

d -= 8;

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
- ml128 mx = _mm_loadu_ps (X); X += 4;
- m128 my = _mm_loadu_ps (y); y += 4;
const  ml28 a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;

d -= 4;
}
if (d » 9) {
~ ml128 mx = masked _read (d, x);
~ ml128 my = masked _read (d, y);
~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a m _bil;
}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); 60
}



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

fvec_L2sgr (const * X, < > diff += (x[d] - y[d])**2
const *y, X return diff
d)
msuml = _mm256_setzero_ps(); )/
while (d >= 8) { — » 256bit SIMD Register
mx = _mm256_loadu_ps (x); x += 8; .
ny = Tnm256_loadu ps (v): y 4= 8: » Process eight floats at once
const a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; MX my
d -= 8;
}

msum2 = _mm256_extractfl128 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) {
mx = _mm_loadu_ps (X); x += 4;
my = _mm_loadu_ps (y); y += 4;
const a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;
}
if (d » 9) {
mx = masked read (d, x);
my = masked read (d, y);

ambl =mx - my;
msum2 += a_m bl * a m _bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);

msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); 61



”x — y”% by SIMD BAEMEAEHEES for the degi-lFiSjPé).(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

float fvec_L2sqr (const float * x, < diff += (x[d] - y[d])**2
const float * y, X return diff
size t d)

_ m256 msuml = _mm256_setzero ps(); y .

while (d >= 8) { ' — > 256b|t SIMD Register
PR s WRsE Neeey ps (U5 < = S > Process eight floats at once

~ m256 my = _mm256_loadu_ps (y); y += 8;
const  m256 a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my

d -= 8;

v

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >=4) {
- ml128 mx = _mm_loadu_ps (X); X += 4;
- m128 my = _mm_loadu_ps (y); y += 4;
const  ml28 a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d > 0) {
~ ml128 mx = masked read (d, x);
~ ml128 my = masked read (d, y);
~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a_m_bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); 62



”x — y”z by SIMD BUEE variables for the def 12sqr(x, y): Ref.
2 sake of explanation diff = 0.0
D_31 for (d = @; d < D; ++d):

float fvec_L2sqr (const float * x, diff += (x[d] - y[d])**2
const float * y, X return diff
size t d)

_ m256 msuml = _mm256_setzero ps(); y

while (d >= 8) { ' — > 256b|t SIMD Register
PR s WRsE Neeey ps (U5 < = S > Process eight floats at once

~ m256 my = _mm256_loadu_ps (y); y += 8;
const  m256 a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my

d -= 8;

A
v

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
. <
msum2 += _mm256_extractfl28 ps(msuml, 0); A2

e Gleteleletatele

~ m128 mx = _mm_loadu_ps (x); X += 4; am bl
- m128 my = _mm_loadu_ps (y); y += 4; —_ —
const  ml28 a_m_bl = mx - my;

msum2 += a_m_bl * a_m_bil;

d -= 4;

}

if (d » 9) {
~ ml128 mx = masked read (d, x);
~ ml128 my = masked read (d, y);
~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a_m_bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); 63



”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

float fvec_L2sqr (const float * x, diff += (x[d] - y[d])**2

const float * vy, X return diff
size t d)

A
v

{
_ m256 msuml = _mm256_setzero ps(); )/
while (d >= 8) { — > 256b|t SIMD Register
~ m256 mx = _mm256_loadu_ps (x); X += 8; .
256 my = _nm256_ loadu ps (y): y 4= 8: | » Process eight floats at once
const  m256 a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my
d -= 8;
}
: 293K
. m128 msum2 = _mm256_extractfl28 ps(msuml, 1); SIS
msum2 += _mm256_extractf128 ps(msuml, 0); ADAARARALRAR
e kel
~ m128 mx = _mm_loadu_ps (x); X += 4; am bl
- m128 my = _mm_loadu_ps (y); y += 4; _— =
const  ml28 a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4; S
’ SIS
o] <2
} R R RS

s o) 1 PRYPRLRY
~ ml128 mx = masked read (d, x);
_ m128 my = masked_read (d, y); mSlJml E
_ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a_m_bil;

}
msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); 64
}



”x — y”% by SIMD BAEMEAEHEES for the degi-lFiSjPé).(é y): Ref.
sake of explanation D= for (d = 05 d < D; ++d):

diff += (x[d] - y[d])**2
return diff

v

float fvec_L2sqr (const float * x, <
const float * vy,
size t d) X

31
while (d >= 8) { — > 256b|t SIMD Register
PR s WRsE Neeey ps (U5 < = S > Process eight floats at once

~ m256 my = _mm256_loadu_ps (y); y += 8;
const  m256 a_m_bl = mx - my;
msuml += a_m bl * a_m_bil; mX my

d -= 8;

_ m256 msuml = _mm256_setzero ps(); )/

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >=4) {
- ml128 mx = _mm_loadu_ps (X); X += 4;
- m128 my = _mm_loadu_ps (y); y += 4;
const  ml28 a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d > 0) {

~ ml128 mx = masked read (d, x);

_ m128 my = masked_read (d, y); mSlJml E
_ ml28 a_m_bl = mx - my;

msum2 += a_m bl * a_m_bil;

}

msum2 = _mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2);

return _mm_cvtss 32 (msum2); 65



”x — y”% by SIMD Rename variables for the
sake of explanation

Ref.

def 12sqgr(x, y):
diff = 0.0
for (d = @; d < D; ++d):

D=31

P
<

float fvec_L2sqr (const float * x,

v

diff += (x[d] - y[d])**2

const float * vy,
size t d)

X

return diff

_ m256 msuml = _mm256_setzero ps();

y

while (d >= 8) {
. m256 mx = _mm256_loadu_ps (x); X +=
. m256 my = _mm256_loadu_ps (y); y +=

» 256bit SIMD Register
» Process eight floats at once

const  m256 a_m_bl = mx - my;

mX

msuml += a_m_bl * a_m_bil;

my

d -= 8;

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >=4) {
- ml128 mx = _mm_loadu_ps (X); X += 4;
- m128 my = _mm_loadu_ps (y); y += 4;
const  ml28 a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d » 9) {
~ ml128 mx = masked read (d, x);
~ ml128 my = masked read (d, y);
~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a_m_bil;

}

msum2
msum2
return

_mm_hadd_ps (msum2, msum2);
_mm_hadd_ps (msum2, msum2);
_mm_cvtss 32 (msum2);
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am bl
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”x — y”% by SIMD Rename variables fgr the
sake of explanation

Ref.

def 12sqgr(x, y):
diff = 0.0
for (d = @; d < D; ++d):

D=31

P
<

float fvec_L2sqr (const float * x,

v

diff += (x[d] - y[d])**2

const float * vy,
size t d)

X

return diff

_ m256 msuml = _mm256_setzero ps();

y

while (d >= 8) {
. m256 mx = _mm256_loadu_ps (x); X +=
. m256 my = _mm256_loadu_ps (y); y +=

» 256bit SIMD Register
» Process eight floats at once

const  m256 a_m_bl = mx - my;

mX

msuml += a_m_bl * a_m_bil;

my

d -= 8;

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >=4) {
- ml128 mx = _mm_loadu_ps (X); X += 4;
- m128 my = _mm_loadu_ps (y); y += 4;
const  ml28 a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d » 9) {
~ ml128 mx = masked read (d, x);
~ ml128 my = masked read (d, y);
~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a_m_bil;

}

msum2
msum2
return

_mm_hadd_ps (msum2, msum2);
_mm_hadd_ps (msum2, msum2);
_mm_cvtss 32 (msum2);

h
e
o

+€D§,
DY
<D

%

<Dy

%

D
DX
DB

am bl

Q

'
%
X

\/

)
%
%
%
X

V

QK
@
@
@
@
@
QN

msuml

6/



”x — y”% by SIMD Rename variables ff)r the
sake of explanation D=

def 12sqr(x, y): REf

float fvec_L2sqr (const float * x, <

diff = 0.0
for (d = @; d < D; ++d):
> diff += (x[d] - y[d])**2

const float * vy,
size t d) X

return diff

_ m256 msuml = _mm256_setzero ps(); y

while (d >= 8) {
~ m256 mx = _mm256_loadu_ps (x); X += 8;

_m256 my = _mm256_loadu_ps (y); y += 8;

» 256bit SIMD Register
» Process eight floats at once

const  m256 a_m_bl = mx - my;

msuml += a_m_bl * a_m_bl; mX my
d -= 8;
}
ZSS
. m128 msum2 = _mm256_extractfl28 ps(msuml, 1); ”0‘:.:.

msum2 += _mm256_extractfl28 ps(msuml, 0);

<V
if (d >= 4) { gﬁ“ﬁ?

~ m128 mx = _mm_loadu_ps (x); X += 4; am bl
- m128 my = _mm_loadu_ps (y); y += 4; _— =
const  ml28 a_m_bl = mx - my;

msum2 += a_m_bl * a_m_bil;

Rk

d -= 4; <
} , S :=§§E=:<>
4'» > 4' > <'>

'
X0

> >

P8

@

550

~ m128 mx = masked _read (d, x); msuml

~ ml128 my = masked read (d, y);

~-]

~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a_m_bil;
}

msum2 = _mm_hadd_ps (msum2, msum2); ????

msum2 = _mm_hadd_ps (msum2, msum2); msum2

return _mm_cvtss 32 (msum2);

~=d > 128bit SIMD Register |
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”x — y”% by SIMD Rename variables ff)r the
sake of explanation

float fvec_L2sqr (const float * x,

const float * vy,
size t d) X
_ m256 msuml = _mm256_setzero ps(); )/

while (d >= 8) {
~ m256 mx = _mm256_loadu_ps (x); X += 8;
~ m256 my = _mm256_loadu_ps (y); y += 8;
const  m256 a_m_bl = mx - my;
msuml += a_m_bl * a_m_bil;
d -= 8;

mX

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >=4) {
- m128 mx = _mm_loadu_ps (x); X += 4;
- m128 my = _mm_loadu_ps (y); y += 4;
const  ml28 a_m_ bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d » 9) {
~ ml128 mx = masked read (d, x);
~ ml128 my = masked read (d, y);
~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a_m_bil;

}

_mm_hadd_ps (msum2, msum2);
_mm_hadd_ps (msum2, msum2);
_mm_cvtss 32 (msum2);

msum2
msum2
return

D=31

Ref.

def 12sqgr(x, y):
diff = 0.0
for (d = @; d < D; ++d):

v

diff += (x[d] - y[d])**2
return diff

my

AR

am bl

msum2

PPRY

~= > 128bit SIMD Register |
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”x — y”% by SIMD Rename variables ff)r the
sake of explanation

float fvec_L2sqr (const float * x,

const float * vy,
size t d) X
_ m256 msuml = _mm256_setzero ps(); )/

while (d >= 8) {
~ m256 mx = _mm256_loadu_ps (x); X += 8;
~ m256 my = _mm256_loadu_ps (y); y += 8;
const  m256 a_m_bl = mx - my;
msuml += a_m_bl * a_m_bil;
d -= 8;

mX

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >=4) {
- ml128 mx = _mm_loadu_ps (Xx); X += 4;
- m128 my = _mm_loadu_ps (y); y += 4;
const  ml28 a_m_bl = mx - my;
msum2 += a_m_bl * a_m_bil;
d -= 4;

}

if (d > 9) {
~ m128 mx = masked read (d, x);
~ m128 my = masked read (d, y);
~ ml28 a_m_bl = mx - my;
msum2 += a_m bl * a m_bil;

}

msum2
msum2
return

_mm_hadd_ps (msum2, msum2);
_mm_hadd_ps (msum2, msum2);
_mm_cvtss 32 (msum2);

D=31

Ref.

def 12sqgr(x, y):
diff = 0.0
for (d = @; d < D; ++d):

v

diff += (x[d] - y[d])**2

return diff

= .

I 4 The rest I

my

AR

am bl

msum2

PPRY

~= > 128bit SIMD Register |
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”x — y”% by SIMD BAEMEAEHEES ff)r the degi-lFisjPé),(é y): Ref.
sake of explanation D=31 for (d = 05 d < D; ++d):

float fvec_L2sqr (const float * x, < > diff += (x[d] - y[d])**2
const float * y, X return diff
size t d)
{
~ m256 msuml = _mm256_setzero _ps(); y - ] 4 The rest I

while (d >= 8) {
~ m256 mx = _mm256_loadu_ps (x); X += 8;

~ m256 my = _mm256_loadu_ps (y); y += 8;
const  m256 a_m_bl = mx - my;
msuml += a_m_bl * a_m_bl; mX ojofo my ojofo ﬂ » 128bit SIMD Register I

d -= 8;

. m128 msum2 = _mm256_extractfl28 ps(msuml, 1);
msum2 += _mm256_extractfl28 ps(msuml, 0);

if (d >= 4) { @@@@

~ m128 mx = _mm_loadu_ps (x); X += 4; am bl
- m128 my = _mm_loadu_ps (y); y += 4; _— =
const  ml28 a_m_bl = mx - my;

msum2 += a_m_bl * a_m_bil;

d -= 4;

}

if (d > 0) { @@@@
~ ml128 mx = masked _read (d, x);
~ ml128 my = masked _read (d, y); msumz
~ ml28 a_m_bl = mx - my; |/ //
msum2 += a_m bl * a m _bil;

}

msum2 = mm_hadd_ps (msum2, msum2); |/

msum2 = _mm_hadd_ps (msum2, msum2); m ?
return _mm_cvtss 32 (msum2); |:| 71



”x — y”z by SIMD BUEE variables for the def 12sqr(x, y): Ref.
2 sake of explanation diff = 0.0
D=31 for (d = @; d < D; ++d):

fvec_L2sqgr (const ** X, < diff += (x[d] - y[d])**2
const s v, X ' return diff
{ msuml = _mm256_setzero_ps(); y | = QThe rest I
» SIMD codes of faiss are simple and easy to read
» Being able to read SIMD codes comes in handy

sometimes; why this impl is super fast
» Another example of SIMD L2sqgr from HNSW:

https://github.com/nmslib/hnswlib/blob/master/hnswlib/space 12.h

mx = masked read (d, x); T E
my = masked_read (d, y); msumz
a_m_bl = mx - my; |/ //
msum2 ~m_bl * a m_bil;
}
|/

msum2 = mm_hadd_ps (msum2, msum2);
msum2 = _mm_hadd_ps (msum2, msum2); m
return _mm_cvtss 32 (msum2); |:| 72


https://github.com/nmslib/hnswlib/blob/master/hnswlib/space_l2.h

M D-dim query vectors Q=1{q9.,9,,..,q9y}
N D-dim database vectors X = {x1,X,, ..., Xy}

Task : Given g € Q and x € X, compute ||q — x||5

def 12sgr(g, x): parfor q 1in Q: Parallelize
diff = 0.0 for x 1in X: ﬁ query-side
for (d = 9; d < D; ++d): 12sgr(g, x) Select min by heap,
diff += (q[d] - x[d])**2 ‘ﬁ
return diff

but omit it now

it M < 20 :

compute ||q — x||5 by SIMD
else

compute |[q — x||5 = lIqll5 — 2q"x + ||x]|5 by BLAS 73



Compute [lg — x|I5 = lIqll5 — 2q " x + ||x]|5 with BLAS
Stack M D-dim query vectors to a D X M matrix: Q=1q94.495,..,9y] € RD*xM
Stack N D-dim database vectorstoa D X N matrix: X =[x, X5, ..., xy] € RP*N

# Compute tables |SIMD—acceIeratedfunction|

g_norms = norms(Q) # llqill5 llazll3, ... llayll3
x_nhorms = norms(X) # 115 x5, oo x5
ip = sgemm_(Q, X, ..) # Q'X

\l » Matrix multiplication by BLAS

» Dominant if Q and X are large

» The difference of the background matters:
v" Intel MKL is 30% faster than OpenBLAS

# Scan and sum
parfor (m = @; m < M; ++m):
for (n = ©@; n < N; ++n):

dist = g _norms[m] + x norms[n] - 2 * ip[m][n]

(1am —%Z) () (%) (@ Omd




NN in GPU (faiss-gpu) is 10x faster than NN in CPU (faiss-cpu)

Benchmark: https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

> NN-GPU always compute ||ql|l5 — 2q " x + ||x]|5

» k-means for 1M vectors (D=256, K=20000)

v" 11 min on CPU

v' 55 sec on 1 Pascal-class P100 GPU (float32 math) )
v' 34 sec on 1 Pascal-class P100 GPU (float16 math)

v’ 21 sec on 4 Pascal-class P100 GPUs (float32 math)

v' 16 sec on 4 Pascal-class P100 GPUs (float16 math)

x10 faster HEEN

» If GPU is available and its memory is enough, try GPU-NN
» The behavior is little bit different (e.g., a restriction for top-k)


https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks
https://github.com/facebookresearch/faiss/wiki/Low-level-benchmarks

Outline

1. History from an applications perspective

2. Importance of implementation:
nearest neighbor search in faiss

76



Graph search

» De facto standard if all data can be loaded on memory
» Fast and accurate for real-world data

» Important for billion-scale situation as well
v' Graph-search is a building block for billion-scale systems

Z » Traverse graph towards the query
» Seems intuitive, but not so much

easy to understand
» Review the algorithm carefully

entry point

Images are from [Malkov+, Information Systems, 2013] 7 7



Constructign Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NerulPS 2019]

Increment approach Refinement approach

» Add a new item to the current > lteratively refine an initial graph
graph incrementally
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Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NerulPS 2019]

Increment approach Refinement approach
» Add a new item to the current > lteratively refine an initial graph

graph incrementally
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Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector
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Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

» Given a new database vector,
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Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
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Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
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Construction: incremental appraazh
» Prune edges if some node have too many edges

Graph of » Several strategies (e.g., RNG-pruning)

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
84



Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NerulPS 2019]

Increment approach Refinement approach
» Add a new item to the current > lteratively refine an initial graph

graph incrementally
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Construction: refinement approach Images are from [Subramanya+, NerulPS 2019]

=

» Create an initial graph (e.g., random graph or approx. kNN graph)

» Refine it iteratively (pruning/adding edges)

36



COﬂStruction: rEfinement approach Images are from [Subramanya+, NerulPS 2019]
I
» Need to be moderately sparse (otherwise the

graph traverse is slow)

o

> Some

=» =»

= =

» Create an initial graph (e.g., random graph or approx. kNN graph)
» Refine it iteratively (pruning/adding edges) Q7




m Images are from [Malkov+, Information Systems, 2013]

Name each node for
explanation

» Given a query vector

Alanb ay1 01 aso|)

Candidates
(size = 3)
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m Images are from [Malkov+, Information Systems, 2013]
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Candidates
(size = 3)

entry point

» Given a query vector
> Start from an entry point (e.g., )
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m Images are from [Malkov+, Information Systems, 2013]

Alanb ay1 01 aso)

@ 23.1

Candidates
(size = 3)

entry point

» Given a query vector
» Start from an entry point (e.g.,@ ). Record the distance to g.
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m Images are from [Malkov+, Information Systems, 2013]

Alanb ay1 01 aso)

entry point

@ 23.1

Candidates
(size = 3)
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m Images are from [Malkov+, Information Systems, 2013]

Adanb ay1 01 aso|)

@ 23.1

Candidates
(size = 3)

entry point

92



m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

\

H
> Pick up the unchecked best candidate (D)

93



m Images are from [Malkov+, Information Systems, 2013]

\

H
» Pick up the unchecked best candidate (@).

Alanb ay1 01 aso|)

D 231
BeSt Candidates

(size = 3)

er check!

">
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m Images are from [Malkov+, Information Systems, 2013]

H
» Pick up the unchecked best candidate (@).
» Find the connected points.

">

Alanb ay1 01 aso)

Best

er check!

D 231

Candidates
(size = 3)
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m Images are from [Malkov+, Information Systems, 2013]

\

H
» Pick up the unchecked best candidate (@).
» Find the connected points.
» Record the distances to q.

Alanb ay1 01 aso)

er check!

D 231

Candidates
(size = 3)
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m Images are from [Malkov+, Information Systems, 2013]
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er check!
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H
» Pick up the unchecked best candidate (@).
» Find the connected points.
» Record the distances to q.

Candidates
(size = 3)
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m Images are from [Malkov+, Information Systems, 2013]
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entry point

\

H
» Pick up the unchecked best candidate (@).
» Find the connected points.
» Record the distances to q.
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m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

entry point

\

H
» Pick up the unchecked best candidate (@).
» Find the connected points.
» Record the distances to q.
» Maintain the candidates (size=3) 99




m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

entry point

\

H
» Pick up the unchecked best candidate (@).
» Find the connected points.
» Record the distances to q.
» Maintain the candidates (size=3) 100




m Images are from [Malkov+, Information Systems, 2013]
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m Images are from [Malkov+, Information Systems, 2013]
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Observation: runtime
| Observation: runtime 4R

.-"‘,\
> Item comparison takes time; O(D) ® ‘@ X3 € RP

» The overall runtime ~ #item_comparison
~ length _of search path * average outdegree

s nd
start start 3rd path start

%

queryd‘ query@ @ query

outdegree =1 outdegree = 2 outdegree = 2

#item comparison = 3 * (1 + 2 + 2)/3 =5 142



Observation: runtime
| Observation: runtime 4R

» Item comparison takes time; O(D)

» The overall runtime ~ #item_comparison

4-“

-“":\

X3 € RP

~ length _of search path * average outdegree

st
star

start

FEIEI

start

qu
— (2) How to sparsify the graph?

To accelerate the search,
(1) How to shorten the search path?
» E.g., long edge (shortcut), hierarchical structure

\_ » E.g., deleting redundant edges

‘?
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Observation: candidate size

Slow. But find a better solution

query Candidates query Candidates
start . :
(size =1) (size = 3)
— Fast. But stuck in a local minimum
size = 1: Greedy search size > 1: Beam search

» Larger candidate size, better but slower results

» Online parameter to control the trade-off
» Called “ef” in HNSW
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Algorithm 1. Search-on-Graph(G, p, q, 1)

Require: graph G, start node p, query point q, candidate pool

size [

Ensure: k nearest neighbors of q

1:

i = 0, candidate pool S = ()

2: S.add(p)

3:
4:
5:
6:
7
8:
9:
10:
11:
12:
13:
14:
15:

whilei < [ do

i = theid of the first unchecked node p; in S
mark p; as checked
for all neighbor n of p; in G do
if n has not been visited then
S.add(n)
end if
end for
sort S in ascending order of the distance to g
if S.size() > [then
S.resize(l) / / remove nodes from back of S to keep its
size no larger than I
end if

16: end while
17: return the first knodesin S

NSG [Cong+, VLDB 19]

Algorithm 1: GreedySearch(s,x,, k. L)

Data: Graph ' with start node s, query x4, result
size k, search list size L > k
Result: Result set £ containing k-approx NNs, and
a set V containing all the visited nodes
begin
initialize sets L < {s} and V <+ 0
while £\ V # 0 do
let px <— argmingep\y |[Xp — Xgl|
update L < LU Ny (p*) and
V—VU{p}
if |£| > L then
update £ to retain closest L
L points to X4

return [closest k points from L; V|

DiskANN [Subramanya+, NeurlPS 19]

Algorithm 1 Beam search
Data: graph G, query g, initial vertex vg. output size k
Initialization:
V = {wvg} // aset of visited vertices
H = {vg : d(vg,q)} /] a heap of candidates
while has runtime budget do
v; = SelectNearest(H. q)
for v € Expand(v;,G) do
if v € V then
V = Add(V, )
H = Insert(H,v,d(v,q))
end

end
end
return TopK(V. q. k)

Learning to route [Baranchuk+, ICML 19]

» All papers have totally different pseudo code =
» Principles are the same. But small details are different.
» Hint: Explicitly state the data structure or not
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Pseudo code

Candidates are stored Candidates are stored

Algorithm 1 Beam search

Data: graph G, query g, initial vertex v, output size k
Initialization:

V = {wg} // aset of visited vertices

' in an array

s1ze
Ensure: k neares
1 =0, candidd
: S.add(p)
: while: < [ d

s1ze L > k
_ aining k-approx NNs, and
a set ) C8 b all the visited nodes

—

begin

initialize set

while has runtime budgetr do
+— {s} and V+ 0 v; = SelectNearest(H. q)

2
3
4 i = theid e first unchecked node p; in S - |
5. mark p; a while £\ V # 0 dd for v € Exzpand(v;, G) do
6 for all neifhbor n of p; in G do let p*x < argmin Xp — Xql | if v € V then
7 if n has not been visited then update and Vo= Add(v, {’)
8: Sadd(n) V—Vu{p} H := Insert(H,v,d(
9 end if if |£| > L then end
}?3 end for update £ to retain [G108€st L end
12:  if Ssize() > | then B points to Xg end
13: .SI.resme(l) / / remove nodes fro ck of S to keep its return [closest k points f c; V] return TopK(V. q. k)
14: size no larger than I L
15:  endif

16: end while Learning to route [Bara

17: return the first knodesin S

DiskANN [Subramany urlPS 19]

Candidates are stored in a
heap; automatically sorted

| When need to sort,
say “closest L points”

» Hint: Explicitly state the data structure or not
146



Algorithm 1. Search-on-Graph(G, p, q, 1) Algorithm 1: GreedySearch(s,x,, k. L) Algorithm 1 Beam search
Require: graph G, start node p, query point q, candidate pool Data: Graph G with start node s, query xg, result fotf" .gra[?h G. query g. initial vertex vo. output size k
sizel size k, search list size L > k Initialization:
Ensure: k nearest neighbors ofq Result: Result set £ containing k-approx NNs, and V = {wvo} // a set of visited vertices
;Z ;Zg,diar;dldate pool S =0 a set V containing all the visited nodes H = {vg : d(vg,q)} // a heap of candidates
3. while ?;p < ldo begin while has runtime budgetr do
4 i = the id of the first unchecked node p; in S in:i:tialize sets L+ {s} and V<« 0 Vi :ASEIBCtNearESt(Hf Q)
5: mark p; as checked while £\ V # 0 do for v € Exzpand(v;, G) do
6:  'for all neighbor n of p; in G do let px <— argmingep\y |[Xp — Xgl| if 0 ¢ V then
7: if n has ngt been visited then update L < LU Noyt (p*) and Vo= Add(‘[[, {,)
o V<Vu{p'} H = Insert(H,0,d(v,q))
o if |£] > L the end
10:  end for _ _ update o retain closest L
11:  sort S in as@lding order of the distance to q oint end
12:  if S.size() [SMthen - P end
) remove nodes from back of §to keep its | return [close ts from L; V| return TopK(V, q, k)

Learning to route [Baranchuk+, ICML 19]

DiskANN [S NeurlPS 19]

VX e1 =11k Checked items are stored in a set (“visit” in
R Lhis code means “check” in our notation)

» Hint: Explicitly state the data structure or not
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Algorithm 1. Search-on-Graph(G, p, q, 1)

Require: graph G, start node p, query point q, candidate pool
size [
Ensure: k nearest neighbors of q
1: i =0, candidate pool S = 0}
2: S.add(p)
3: while: < [ do

4: i = theid of the first unchecked node p; in S
5: mark p; as checked
6: for all neighbor n of p; in G' do
7 if n has not been visited then
8: S.add(n)
9: end if
10:  end for

11:  sort S inascending
12:  if S.size() > [ they
13: S.resize(l) // re
14: size no larger tl
15:  endif

16: end while

17: return the first kg

the distance to q

back of S to keep its

Visited item are simply said to be “visited”; implying

an additional hidden data structure (array)
- JIC dl C - C -

Algorithm 1: GreedySearch(s.x,. k, L)

Data: Graph GG with start node s, query x4, result
size k, search list size L > k
Result: Result set £ containing k-approx NNs, and
a set V containing all the visited nodes
begin
initialize sets L < {s} and V <+ 0
while £\V # 0 do
let px <— argmingep\y |[Xp — Xgl|
update L < LU Noui(p*) and
V—Vu{p}
if |£| > L then
update £ to retain closest L
L points to X4

return [closest k points from L; V|

Algorithm 1 Beam search

Data: graph G, query g, initial vertex v, output size k
Initialization:

V = {wp} // aset of visited vertices

H = {vg : d(vg,q)} // a heap of candidates

while has runtime budgetr do
v; = SelectNearest(H. q)
for v € Expand(v;, G) do
if v € V then
V = Add(V,v)
Insert(H,v,d(0,q))

end
end

end
return Top

» Hint: Explicitly state the data structure or not

DiskANN [Subramanya+, NeurlPS 19]

Learning bute [Baranchuk+, ICML 19]

Visited items are

stored in a set
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Algorithm 1. Search-on-Graph(G, p, q, 1) Algorithm 1: GreedySearch(s.x,. k, L) Algorithm 1 Beam search

Require: graph G, start node p, query point q, candidate pool Data: Graph G with start node s, query x,. result fot‘a: .gm[?h G, query ¢, initial vertex vg, output size k

size | _ size k. search list size L > k Initialization:

Ensure: k nearest neighbors of q Result: Result set £ containing k-approx NNs, and V = {vo} // aset of visited vertices
1:3=0, candidate pool 5= a set V containing all the visited nodes H = {vg : d(vg,q)} // a heap of candidates
2: S.add(p) . = g :

. E— begin while has runtime budger do
3: whilei < ldo o + = SelectNearest(H. q)
4 i = the id of the first unchecked node p; in S 1n:|..t1a112e sets L« {s} and V<« 0 i = clectNearest(H. g
5:  mark p; as chegked while £\ V # 0 do for v € Expand(v;, G) do
6: for all neighbor NSk, in G do let px & arg minpel_‘,\v ||xp — xq|| if 0 € V then
7 if n has not been visitcuijghae LU Nout (p*) and V = Add(p’, )
5 S.add(n) H = Insert(H,0,d(v,q))
9: end if d
10:  end for en
11:  sort S in ascending order of the distance to g end

12:  if S.size() > [then end
13: b'j.resize(l) / / remove nodes from back of return TO]JK(V_. q. k)
14: size no larger than I

15:  endif
16: end while
17: return the first knodesin S

NSG [Cong+, VLDB 19]

» All papers have totally different pseudo code =
» Principles are the same. But small details are different.
» Hint: Explicitly state the data structure or not

Learning to route [Baranchuk+, ICML 19]
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Algorithm 1. Search-on-Graph(G, p, q, 1)

Require: graph G, start node p, query point q, candidate pool
size [

Ensure: k nearest neighbors of q

1: i =0, candidate pool S = ()

2: S.add(p)

3: while: < [ do
i = theid of the first unchecked node p; in S
mark p; as checked
for all neighbor n of p; in G' do

if n has not been visited then
S.add(n)

9: end if
10:  end for
11:  sort S in ascending order of the distance to q
12:  if S.size() > [ then

13: S.resize(l) / / remove nodes from back of S to keep its
14: size no larger than I
15:  endif

16: end while
17: return the first knodesin S

NSG [Cong+, VLDB 19]

> All papers

Algorithm 1: GreedySearch(s.x,. k, L)

Data: Graph GG with start node s, query x4, result
size k, search list size L > k
Result: Result set £ containing k-approx NNs, and
a set V containing all the visited nodes

begin
initialize sets L < {s} and V <+ 0
while £\V # 0 do
let px <— argmingep\y |[Xp — Xgl|
update L < LU Noui(p*) and
V—Vu{p}
if |£| > L then
update £ to retain closest L
L points to X4

return [closest k points from L; V]

DiskANN [Subramanya+, NeurlPS 19]

Algorithm 1 Beam search
Data: graph G, query g, initial vertex v, output size k
Initialization:
V = {wp} // aset of visited vertices
H = {vg : d(vg,q)} // a heap of candidates
while has runtime budgetr do
v; = SelectNearest(H. q)
for v € Expand(v;, G) do
if v € V then
V = Add(V,v)
H = Insert(H,v,d(v,q))
end

end

end
return TopK(V. q. k)

Learning to route [Baranchuk+, ICML 19]

) My explanation was based on NSG, but with slight modifications for simplicity:
y » Candidates are stored in an automatically-sorted array

> Termination condition is “all candidates are checked”




Algorithm 1. Search-on-Graph(G, p, q, 1) Algorithm 1: GreedySearch(s.x,. k, L) Algorithm 1 Beam search
Require: graph G, start node p, query point q, candidate pool Data: Graph G with start node s, query x,. result Df,tf': .gm[?h G, query ¢, initial vertex vg, output size k
sizel size k, search list size L > k Initialization:

Ensure: k nearest neighbors of q Result: Result set £ containing k-approx NNs, and V = {vo} // aset of visited vertices

; ?;agrdc(al;dldate pool S =0 a set V containing all the visited nodes H = {vg : d(vo,q)} // a heap of candidates

3. ;»v‘hile?:p < ldo begin while has runtime budger do

4 i = the id of the first unchecked node p; in S in:i:tialize sets L« {s} and V<« 0 v; = SelectNearest(H. q)

5. mark p; as checked while £\ V # 0 do for v € Exzpand(v;, G) do

6: for all neighbor n of p; in G' do let px <— argminger\y [[Xp — Xq| if v € V then

7 if n has not been visited 2 -

8: S.add(n) | (%,q))

9: dif ’

O g Formal (?) definition would be helpful for everyone

11:  sort S in ascending order o o =

12:  if S.size() > [ then end
13: bj.remze(l) / / remove nodes from back of S to keep its return [closest k points from £; V] return TopK(V. q. k)
14: size no larger than I
15:  endif L ;

. . earning to route [Baranchuk+, ICML 19]

16: end while DiskANN [Subramanya+, NeurlIPS 19] & ’

17: return the first knodesin S

NSG [Cong+, VLDB 19]

» All papers have totally different pseudo code =
» Principles are the same. But small details are different.
» Hint: Explicitly state the data structure or not
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Outline

1. History from an applications perspective
2. Importance of implementation

3. Basics of modern baseline

S- s'" '-"let"c HalneWOlkio
'’
I8 hb () " 1




	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46
	スライド 47
	スライド 48
	スライド 49
	スライド 50
	スライド 51
	スライド 52
	スライド 53
	スライド 54
	スライド 55
	スライド 56
	スライド 57
	スライド 58
	スライド 59
	スライド 60
	スライド 61
	スライド 62
	スライド 63
	スライド 64
	スライド 65
	スライド 66
	スライド 67
	スライド 68
	スライド 69
	スライド 70
	スライド 71
	スライド 72
	スライド 73
	スライド 74
	スライド 75
	スライド 76
	スライド 77
	スライド 78
	スライド 79
	スライド 80
	スライド 81
	スライド 82
	スライド 83
	スライド 84
	スライド 85
	スライド 86
	スライド 87
	スライド 88
	スライド 89
	スライド 90
	スライド 91
	スライド 92
	スライド 93
	スライド 94
	スライド 95
	スライド 96
	スライド 97
	スライド 98
	スライド 99
	スライド 100
	スライド 101
	スライド 102
	スライド 103
	スライド 104
	スライド 105
	スライド 106
	スライド 107
	スライド 108
	スライド 109
	スライド 110
	スライド 111
	スライド 112
	スライド 113
	スライド 114
	スライド 115
	スライド 116
	スライド 117
	スライド 118
	スライド 119
	スライド 120
	スライド 121
	スライド 122
	スライド 123
	スライド 124
	スライド 125
	スライド 126
	スライド 127
	スライド 128
	スライド 129
	スライド 130
	スライド 131
	スライド 132
	スライド 133
	スライド 134
	スライド 135
	スライド 136
	スライド 137
	スライド 138
	スライド 139
	スライド 140
	スライド 141
	スライド 142
	スライド 143
	スライド 144
	スライド 145
	スライド 146
	スライド 147
	スライド 148
	スライド 149
	スライド 150
	スライド 151
	スライド 152

