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Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Johnson-Lindenstrauss Approximates Inner Products.
(10 pts)

1. Suppose that II is a Johnson-Lindenstrauss matrix with & = O (m%#) rows. Prove that for any x, y:

[z, y) — (M, Ty)| < e([|[13 + |y ]13)
with probability > 1 — 4. Hint: Try exploiting connections between norms and inner products.

2. Show that a better bound can be obtained by augmenting our sketches with the norms of each vector.
Le., instead of just Iz and Iy, store as the sketches for = and y both (Ilz, ||z||2) and (Ily, ||y||2) and
show that using these sketches we can compute an estimate z such that

(2, y) — 2| <e(llzll2/lyll2)

with 1 — § probability when & = O (b%#). By the AM-GM inequality, we always have that
lzllzllyllz < ll=lZ + lly]3.

Problem 2: Estimating Quantiles in a Stream

(20 points) Consider the standard turnstile model of streaming discussed in class, where there is an under-
lying frequency vector f € R™, initialized to 0, and which receives a sequence of updates to its coordinates
(i, A) € [n] X Z, causing the change f; + f; + A.

e (10 points) The sample variance of a vector f € R" is defined to be

where p =3, % Show how to output a number ¥ such that, with probability at least 9/10, we have
(1—¢€)v < v < (1+€)d. Your algorithm should use at most O(1/¢?) words of space, and you may
assume the algorithm knows the number n in advance.

e (10 points) For exactly one of the functions 1) : g1(f) = Y1, (f2 — 10f; 4+ 16), and 2) : g2(f) =
St (f? — 8fi + 16), it is possible, with probability at least 2/3, to output a number § such that
9(f)/2 < g <3g/2, and for which the algorithm uses O(1) words of space. For the other function, any
algorithm requires at least €2(n) bits of space to output such an § with probability at least 2/3. Show
which function is which, and prove why in both cases.

For your lower bound argument, you should use the fact that any randomized algorithm which, with
probability at least 2/3, distinguishes at the end of the stream between the case that either all coordi-
nates f; are in the set {0,1}, or there is exactly one ¢ € [n] for which f; ¢ {0,1}, requires £2(n) bits of
space. Let us refer to this problem as problem P.

Hint: Think about being given an input stream to problem P, modifying the stream in a certain way,

and using the output g of an algorithm for one of the functions above, run on a modified stream, to
solve problem P.
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Problem 3: Compressed classification.

(10 pts) In machine learning, the goal of many classification methods (like support vector machines) is to
separate data into classes using a separating hyperplane.

Recall that a hyperplane in R? is defined by a unit vector a € R? (||a|s = 1) and scalar ¢ € R. Tt contains
all h € R? such that (a,h) = c.

Suppose our dataset consists of n unit vectors in R? (i.e., each data point is normalized to have norm
1). These points can be separated into two sets X, Y, with the guarantee that there exists a hyperplane
such that every point in X is on one side and every point in Y is on the other. In other words, for all
z € X, {(a,z) >cand for all y € Y, (a,y) < c.

Furthermore, suppose that the /5 distance of each point in X and Y to this separating hyperplane is at
least . When this is the case, the hyperplane is said to have “margin” e.

1. Show that this margin assumption equivalently implies that for all € X, {(a,z) > ¢+ € and for all
yeY,(a,y) <c—e

2. Show that if we use a Johnson-Lindenstrauss map II to reduce our data points to O(logn/e?) dimen-
sions, then the dimension reduced data can still be separated by a hyperplane with margin /4, with
high probability (say > 9/10).

Problem 4: Join Size Estimation

(15 pts) One powerful application of sketching is in database applications. For example, a common goal
is to estimate the inner join size of two tables without performing an actual inner join (which is expensive,
as it requires enumerating the keys of the tables). Formally, consider two sets of keys X = {x1,..., 2}
and Y = {y1,...,yn} which are subsets of 1,2,...,U. Our goal is to estimate |X NY| based on small space
compressions of X and Y. We consider two approaches below.

1. Using your result from Problem 1, describe a method based on inner product estimation that constructs
independent sketches of X and Y of size k = O (6%) and from these sketches can return an estimate Z
for | X NY| satisfying

1Z — X nY][[ < eV/|X]]Y]
with probability 9/10.
2. Alternatively, consider compressing the sets as follows:

e Choose k uniform random hash functions hq, ..., hy : {1,...,U} — [0, 1].

o Let C* =[Cff,...,C{] where C =minj_1,_, hi(x;).

e Let CY = [CY,...,CY] where CY = minj—1,__n hi(y;).
Given the sketches CX and CY ., which each contain k numbers, we estimate join size as Z = %’ - (% —1)
where k' < k equals ¥ = Y2 1[C¥ = CY] and

k
1 X AY
S = %;mm(q ,C).

Show that if we set k = O(Z) then with probability 9/10,

|Z —1XNY|| <ey/|XNY||XUY].
In your proof, you may use the following fact: given a uniform hash function h and a set A =
{a1,...,ar}, define the random variable M = min;—q 7 h(a;). Then it holds that E[M] = and

Var(M) < (757)*.

_1
T+1°

Hint: Think about &'/k and (4 — 1) separately. What quanties do we expect these random variables
to be close to?

3. Which method give better accuracy? The JL based method or the hashing based method?
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