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CS-GY 6763: Homework 3.
Due Monday, April 11th, 2022, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Sparse Regression is Only Easier

(10 pts) Often in machine learning it is desirable to choose a “sparse” model that only involves a subset
of features. Sparse models can help avoid overfitting and are sometimes easier to interpret. Suppose we run
some feature selection algorithm to select d’ < d features (i.e., columns) from a data matrix A € R"*¢ with n
examples. Let A’ € R™*? be the data matrix restricted to just those features. Now we want to solve a least
squares regression problem min, ||A’x — b||3. Show that the condition number of this convex optimization
problem is no worse than that of min, || Az — b||3.

Hint: Use the second order definition of S-smoothness and a-strong-convexity in terms of the largest and
smallest eigenvalues of the Hessian Matrix, respectively.

Hint 2: Recall that for a square symmetric matrix A € R"*™ with eigenvalues Apax = A1 > Ag > -+ >
A = Amin, by the Courant-Fischer Min-Max Theorem' we have that
xT Ax xT Ax

A_ = _— : = 1 _—
Anax(B) = 1 Tl Anin(A) = 1000 a3

Problem 2: Approximating Eigenvalues Moments

(15 pts) Let A € R™*"™ be a square symmetric matrix, which means it it guaranteed to have an eigende-
composition with real eigenvalues, A\; > ... > \,. While computing these eigenvalues naively takes O(n?)
time, it turns out that we can compute their sum much more quickly: with n operations. This is because
o, A s exactly equal to the trace of A, i.e. the sum of its diagonal entries tr(A) = >""" | A;;. We can also
compute the sum of squared eigenvalues in O(n?) time by taking advantage of the fact that >, \? = ||A]|%
where [|A[|% = 3, ; A?; is the Frobenius norm. What about Y77 | A?? Or 377 | A}? Tt turns out that no
exact algorithms faster than a full eigendecomposition are known.

In this problem, however, we show how to approzimate Z?:l AE for any positive integer k in O(n?k)
time. By the way, this is not a contrived problem — it has a ton of applications in machine learning and data
science.

(a) Show that Y7, A¥ = tr(A*) where A* denotes the chain of matrix products A - A -...- A, repeated
k times. For the remainder of the problem we use the notation B = A¥.

(b) Let x ... x(™ € R” be m independent random vectors, all with i.i.d. {+1,—1} uniform random
entries. Let Z = = > (x(V)TBx (). We will show that Z is a good estimator for tr(B) and thus for

>, AF. Give a short argument that Z can be computed in O(n?km) time (recall that B = A¥).

(c) Prove that:
4 2
E[Z] = tr(B) and Var[Z] < —||B||%
m
Hint: Use linearity of variance but be careful about what things are independent!

(d) Show that if m = O(Z) then, with probability 9/10,

[tr(B) — Z| < €[ B p-

1See https://en.wikipedia.org/wiki/Min-max_theorem
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(e) Argue that, when A is positive semidefinite, €||B||r < etr(B), so the above guarantee actually gives
the relative error bound,

(1—-e)tr(B) <Z < (1+¢€)tr(B),

all with just O(n2k/€%) computation time.

Problem 3: Count-Sketch is always at least as good as Count-Min

(10 pts) Recall that, for any € € (0,1), Count-Sketch can recover an approximation f to the frequency
vector f € R™ of a stream, such that for all i € [n] we have

fi = fil < €l frainayex)ll2

Where recall faii() is the result of setting the k largest coordinates (in magnitude) equal to 0. To accom-
plish this, Count-Sketch uses O(ei2 logn) words of space. Similarly, we saw that Count-Min produces an
approximation f such that |f; — fi| < €|l frain(1/6) I using O(2 logn) bits of space.

Since for any vector f we have || f|l2 < ||f|l1, the guarantee of Count-Sketch is superior. However,
the space required to obtain this guarantee is larger by a factor of O(1/¢). Therefore, it may seem like
Count-Sketch and Count-Min are incomparable. In this problem, you will show that is not the case.

1. Show that for any 2 < k < n/2 and any vector f € R™, we have

1
| fratgol2 < O (¢E> TN

For simplicity, you may assume that k is even.

Hint: You may want to use Hélder’s inequality,? which states that for any two vectors x,y € R”, and
any p,q € [1,00] such that 1/p+1/q = 1 (where 1/00 is interpreted as 0), we have Y. x;y; < ||z||p||lyllq-

2. Given the above, show how Count-Sketch can be used to obtain a vector f such that |fi — f;| <
€ll feait(1/e) |1 using O(% logn) bits of space. Conclude that Count-Sketch is always at least as good or
better than Count-min, when using the same amount of space (up to a constant).

Problem 4: Locating Points via the SVD

(15 pts) Suppose you are given all pairs distances between a set of points X1, ...,%, € RZ You can assume
that d < n. Formally, you are given an n x n matrix D with D; ; = ||x; — x;[|3. You would like to recover
the location of the original points, at least up to possible rotation and translation (which do not change
pairwise distances).

Since we can only recover up to a translation, it may be easiest to assume that the points are centered
around the origin. Le. that >\, x; = 0.

1. Under this assumption, describe a polynomial time algorithm for learning Y .-, ||x;|3 from D. Hint:
expand [|x; — x;|13 as (x; — x;)T (x; — x;) and go from there.

2. Next, describe a polynomial time algorithm for learning ||x;||3 for each i € 1,...,n.

3. Finally, describe an algorithm for recovering a set of points xy, ..., X, which realize the distances in
D. Hint: This is where you will use the SVD! It might help to know (and prove to yourself) that D
has rank < d + 2.

4. Implement your algorithm and run it on the U.S. cities dataset provided in UScities.txt. Note that
the distances in the file are unsquared Euclidean distances, so you need to square them to obtain D.
Plot your estimated city locations on a 2D plot and label the cities to make it clear how the plot is
oriented. Submit these images and your code with the problem set (in the same file, as plaintext) — I
don’t need to be able to run the code.
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