New York University Tandon School of Engineering Computer Science and Engineering

CS-GY 6763: Homework 4. Due Monday, May 2nd, 2022, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list collaborators for each problem separately, or write "No Collaborators" if you worked alone.

Problem 1: Optimal Low-Rank Approximation

(10 pts) In class we saw the Eckart-Young-Mirsky theorem, which claimed that the best low-rank approximation to any matrix $X \in \mathbb{R}^{n \times d}$ is given by $XV_kV_k^T$, where $V_k \in \mathbb{R}^{d \times k}$ contains the top k right singular vectors of $X = U\Sigma V^T$ – i.e., the top k eigenvectors of the positive semidefinite matrix X^TX . Here you will prove this from scratch, using just basic properties of projection matrices and eigenvectors.

- 1. Let $X \in \mathbb{R}^{n \times d}$ be as above, and let $M \in \mathbb{R}^{n \times d}$ be a candidate k rank approximation that has singular value decomposition $M = QDZ^T$ for orthonormal $Q \in \mathbb{R}^{n \times k}$, $Z \in \mathbb{R}^{d \times k}$, and diagonal $D \in \mathbb{R}^{k \times k}$. Prove that $\|X M\|_F^2 = \|XZZ^T M\|_F^2 + \|X XZZ^T\|_F^2$ and conclude that, if $M = \arg\min_{\text{rank } kB} \|X B\|_F^2$, then $M = XZZ^T$.
- 2. Using a similar argument as above, one can show that, if $M = \arg\min_{\text{rank }kB} \|X B\|_F^2$, then $M = QQ^TX$. Use this and part (1) to prove that $X^TXZ = ZD^2$ for any optimal rank k approximation $M = QDZ^T$. Conclude that each column of Z is an eigenvector of X^TX . Hint: It may be helpful to prove as an intermediate step that XZ = QD and $Q^TX = DZ^T$.
- 3. Complete the proof, showing that the best low-rank approximation of X is given by $XV_kV_k^T$ where V_k contains the top k eigenvectors of X^TX .

Problem 2: Matrix Concentration from Scalar Concentration

(15 pts) In this problem, we will show that random matrices have small spectral norms with high probability – this is a form of a matrix concentration inequality. Specifically, construct a random matrix $R \in \mathbb{R}^{n \times n}$ by setting R_{ij} to +1 or -1, uniformly at random. Prove that, with high probability, we have

$$||R||_2 \le c\sqrt{n\log n},$$

For some constant c > 0. This is much better than the naive bound of $||R||_2 \le ||R||_F = n$ and it's nearly tight: we always have that $||R||_2^2 \ge ||R||_F^2/n$ (do you see why?) so $||R||_2 \ge \sqrt{n}$ no matter what.

Here are a few hints that might help you along:

• You can use the following fact (which you may like to prove for yourself as an exercise): for any matrix $R \in \mathbb{R}^{n \times n}$, we have

$$||R||_2 = \max_{x,y \in \mathbb{R}^n} \frac{x^T R y}{||x||_2 ||y||_2}$$

• To bound $||R||_2$, first try to first bound

$$x^{T}Ry = \sum_{i=1}^{n} \sum_{j=1}^{n} R_{i,j} x_{i} y_{j}$$

for one particular pair of unit vectors $x, y \in \mathbb{R}^m$ (notice that it suffices to consider the max only over unit vectors). You might want to use a Chernoff-Hoeffding bound, or the Khintshine inequality that we saw in Lecture 10.

¹See https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

• Then try to extend the result to hold for all pairs $x, y \in \mathbb{R}^n$ simultaneously, using an ϵ -net argument.

For the next part: You will want to generalize your above proof to show the following statement: there exists a constant C such that, for any $\lambda > 1$, we have

$$\Pr[\|R\|_2 \ge \lambda \sqrt{n \log n}] \le \exp(-C\lambda n \log n)$$

Problem 3: Random Subspaces do not Contain Sparse Vectors

(15 pts) In this problem, we will use the matrix concentration inequality you developed above to prove an important fact about random subspaces: that they do not (even approximately) contain sparse vectors.

We first formalize what it means for a subspace to approximately contain a vector. Recall that, given a k-dimensional linear subspace $\mathcal{U} \subset \mathbb{R}^n$, the orthogonal projection of any vector $x \in \mathbb{R}^n$ onto \mathcal{U} is defined as $\mathbf{V}^T \mathbf{V} x$, where $\mathbf{V} \in \mathbb{R}^{k \times n}$ is a matrix with k orthonormal rows which span \mathcal{U} . In other words, the rows $v_1 \dots, v_k \in \mathbb{R}^n$ of \mathbf{V} satisfy $||v_i||_2^2 = 1$ for all $i \in [k]$, and $\langle v_i, v_j \rangle = 0$ for all $i \neq j$. Note that if x is contained in the subspace \mathcal{U} , the projection of x onto \mathcal{U} is just itself, i.e. $\mathbf{V}^T \mathbf{V} x = x$. Also recall that, for any $x \in \mathbb{R}^n$, by the Pythagorean theorem we have

$$||x||_2^2 = ||\mathbf{V}^T \mathbf{V} x||_2^2 + ||x - \mathbf{V}^T \mathbf{V} x||_2^2$$

Here, $\mathbf{V}^T \mathbf{V} x$ is the "part" of x living in \mathcal{U} , and $x - \mathbf{V}^T \mathbf{V} x$ is the "part" of x orthogonal to \mathcal{U} . By the above equation, it is clear that $||x||_2^2 \ge ||\mathbf{V}^T \mathbf{V} x||_2^2$ for all $x \in \mathbb{R}^n$. Moreover, $||x||_2^2 = ||\mathbf{V}^T \mathbf{V} x||_2^2$ if and only if $x \in \mathcal{U}$. Given this, we say that a vector x is ϵ -approximately contained in \mathcal{U} , for some $\epsilon \in (0,1)$, if we have:

$$\|\mathbf{V}^T \mathbf{V} x\|_2^2 > \epsilon \|x\|_2^2$$

In other words, at least an ϵ fraction of x lies in the subspace \mathcal{U} . Since \mathbf{V}^T has orthonormal columns, we have $\|\mathbf{V}^T\mathbf{V}x\|_2 = \|\mathbf{V}x\|_2$, and so it suffices to just consider the norm of $\mathbf{V}x$. Your goal is to show that, if \mathbf{V} spans a random k-dimensional subspace (i.e., the rows of \mathbf{V} are random orthonormal vectors), then \mathbf{V} does not ϵ -approximately contain any k-sparse vector, for every $k \leq c\epsilon \frac{n}{\log n}$ (where c is a constant that you can choose). Recall that $x \in \mathbb{R}^n$ is called k-sparse if $\|x\|_0 \leq k$.

Specifically, Let $\mathbf{V} \in \mathbb{R}^{k \times n}$ be a matrix with independent entries $\mathbf{V}_{i,j}$ set to either $\frac{1}{\sqrt{n}}$ or $-\frac{1}{\sqrt{n}}$ uniformly at random.² Prove that for every $k \leq c\epsilon \frac{n}{\log n}$, with high probability, we have:

$$\max_{\substack{x \in \mathbb{R}^n \\ \|x\|_0 \le k}} \frac{\|\mathbf{V}x\|_2^2}{\|x\|_2^2} \le \epsilon$$

Hint 1: Start by considering a specific set $S \subset [n]$ of |S| = k coordinates. Apply the concentration inequality you developed in the last problem to show that, with large probability, \mathbf{V} does not ϵ -approximately contain any k-sparse vector $x \in \mathbb{R}^n$ whose non-zero coordinates are contained in S. Once you have shown this for a fixed $S \subset [n]$ with |S| = k, proceed to show it for all such subsets to complete the proof.

Hint 2: You may want to remember the useful inequality $\binom{n}{k} \leq \left(\frac{en}{k}\right)^k$.

Bonus: Communicating in the Dark is Easier with Shared Random Coins

(5 pts extra credit) Suppose Alice holds a subset of elements $A \subseteq \{1, ..., n\}$. Bob holds another subset $B \subseteq \{1, ..., n\}$. Alice and Bob do not know what elements the other holds. Using as little communication as possible, the two of them want to determine if they hold any unique elements – i.e. if there is any $j \in A \cup B - A \cap B$.

Show that, for some constant c, Alice can send Bob a single message of $O(\log^c n)$ bits that allows Bob to find such a j if one exists, with probability at least 2/3.

You can assume that Alice and Bob decide on a strategy in advance, and that they have access to an unlimited source of shared random bits (e.g. that are published by some third party).

²You can check that each row of **V** has unit norm. However, the rows of **V** are not *exactly* orthogonal, but they are pretty close, namely one can show with a Chernoff bound that $\langle \mathbf{V}_i, \mathbf{V}_j \rangle \leq O(\frac{1}{\sqrt{n}})$. So while **V** is not exactly orthonormal, it is close enough for the purpose of this problem.