
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 4.
Due Monday, May 2nd, 2022, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Optimal Low-Rank Approximation

(10 pts) In class we saw the Eckart–Young–Mirsky theorem, which claimed that the best low-rank approx-
imation to any matrix X ∈ Rn×d is given by XVkV

T
k , where Vk ∈ Rd×k contains the top k right singular

vectors of X = UΣV T – i.e., the top k eigenvectors of the positive semidefinite matrix XTX. Here you will
prove this from scratch, using just basic properties of projection matrices and eigenvectors.

1. Let X ∈ Rn×d be as above, and let M ∈ Rn×d be a candidate k rank approximation that has singular
value decompositionM = QDZT for orthonormalQ ∈ Rn×k, Z ∈ Rd×k, and diagonalD ∈ Rk×k. Prove
that ∥X−M∥2F = ∥XZZT−M∥2F+∥X−XZZT ∥2F and conclude that, ifM = argminrank kB ∥X−B∥2F ,
then M = XZZT .

2. Using a similar argument as above, one can show that, if M = argminrank kB ∥X − B∥2F , then M =
QQTX. Use this and part (1) to prove that XTXZ = ZD2 for any optimal rank k approximation
M = QDZT . Conclude that each column of Z is an eigenvector of XTX. Hint: It may be helpful
to prove as an intermediate step that XZ = QD and QTX = DZT .

3. Complete the proof, showing that the best low-rank approximation of X is given by XVkV
T
k where Vk

contains the top k eigenvectors of XTX.

Problem 2: Matrix Concentration from Scalar Concentration

(15 pts) In this problem, we will show that random matrices have small spectral norms with high probability
– this is a form of a matrix concentration inequality. Specifically, construct a random matrix R ∈ Rn×n by
setting Rij to +1 or −1, uniformly at random. Prove that, with high probability, we have

∥R∥2 ≤ c
√
n log n,

For some constant c > 0. This is much better than the naive bound of ∥R∥2 ≤ ∥R∥F = n and it’s nearly
tight: we always have that ∥R∥22 ≥ ∥R∥2F /n (do you see why?) so ∥R∥2 ≥

√
n no matter what.

Here are a few hints that might help you along:

� You can use the following fact (which you may like to prove for yourself as an exercise): for any matrix
R ∈ Rn×n, we have

∥R∥2 = max
x,y∈Rn

xTRy

∥x∥2∥y∥2

� To bound ∥R∥2, first try to first bound

xTRy =

n∑
i=1

n∑
j=1

Ri,jxiyj

for one particular pair of unit vectors x, y ∈ Rm (notice that it suffices to consider the max only over
unit vectors). You might want to use a Chernoff-Hoeffding bound,1 or the Khintshine inequality that
we saw in Lecture 10.

1See https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality


� Then try to extend the result to hold for all pairs x, y ∈ Rn simultaneously, using an ϵ-net argument.

For the next part: You will want to generalize your above proof to show the following statement: there
exists a constant C such that, for any λ > 1, we have

Pr[∥R∥2 ≥ λ
√
n log n] ≤ exp(−Cλn log n)

Problem 3: Random Subspaces do not Contain Sparse Vectors

(15 pts) In this problem, we will use the matrix concentration inequality you developed above to prove an
important fact about random subspaces: that they do not (even approximately) contain sparse vectors.

We first formalize what it means for a subspace to approximately contain a vector. Recall that, given
a k-dimensional linear subspace U ⊂ Rn, the orthogonal projection of any vector x ∈ Rn onto U is defined
as VTVx, where V ∈ Rk×n is a matrix with k orthonormal rows which span U . In other words, the rows
v1 . . . , vk ∈ Rn of V satisfy ∥vi∥22 = 1 for all i ∈ [k], and ⟨vi, vj⟩ = 0 for all i ̸= j. Note that if x is contained
in the subspace U , the projection of x onto U is just itself, i.e. VTVx = x. Also recall that, for any x ∈ Rn,
by the Pythagorean theorem we have

∥x∥22 = ∥VTVx∥22 + ∥x−VTVx∥22
Here, VTVx is the “part” of x living in U , and x −VTVx is the “part” of x orthogonal to U . By the

above equation, it is clear that ∥x∥22 ≥ ∥VTVx∥22 for all x ∈ Rn. Moreover, ∥x∥22 = ∥VTVx∥22 if and only if
x ∈ U . Given this, we say that a vector x is ϵ-approximately contained in U , for some ϵ ∈ (0, 1), if we have:

∥VTVx∥22 > ϵ∥x∥22
In other words, at least an ϵ fraction of x lies in the subspace U . Since VT has orthonormal columns, we
have ∥VTVx∥2 = ∥Vx∥2, and so it suffices to just consider the norm of Vx. Your goal is to show that, if V
spans a random k-dimensional subspace (i.e., the rows of V are random orthonormal vectors), then V does
not ϵ-approximately contain any k-sparse vector, for every k ≤ cϵ n

logn (where c is a constant that you can

choose). Recall that x ∈ Rn is called k-sparse if ∥x∥0 ≤ k.
Specifically, Let V ∈ Rk×n be a matrix with independent entries Vi,j set to either 1√

n
or − 1√

n
uniformly

at random.2 Prove that for every k ≤ cϵ n
logn , with high probability, we have:

max
x∈Rn

∥x∥0≤k

∥Vx∥22
∥x∥22

≤ ϵ

Hint 1: Start by considering a specific set S ⊂ [n] of |S| = k coordinates. Apply the concentration
inequality you developed in the last problem to show that, with large probability, V does not ϵ-approximately
contain any k-sparse vector x ∈ Rn whose non-zero coordinates are contained in S. Once you have shown
this for a fixed S ⊂ [n] with |S| = k, proceed to show it for all such subsets to complete the proof.

Hint 2: You may want to remember the useful inequality
(
n
k

)
≤

(
en
k

)k
.

Bonus: Communicating in the Dark is Easier with Shared Random Coins

(5 pts extra credit) Suppose Alice holds a subset of elements A ⊆ {1, . . . , n}. Bob holds another subset
B ⊆ {1, . . . , n}. Alice and Bob do not know what elements the other holds. Using as little communication
as possible, the two of them want to determine if they hold any unique elements – i.e. if there is any
j ∈ A ∪B −A ∩B.

Show that, for some constant c, Alice can send Bob a single message of O(logc n) bits that allows Bob to
find such a j if one exists, with probability at least 2/3.

You can assume that Alice and Bob decide on a strategy in advance, and that they have access to an
unlimited source of shared random bits (e.g. that are published by some third party).

2You can check that each row of V has unit norm. However, the rows of V are not exactly orthogonal, but they are pretty
close, namely one can show with a Chernoff bound that ⟨Vi,Vj⟩ ≤ O( 1√

n
). So while V is not exactly orthonormal, it is close

enough for the purpose of this problem.


	Problem 1: Optimal Low-Rank Approximation
	Problem 2: Matrix Concentration from Scalar Concentration
	Problem 3: Random Subspaces do not Contain Sparse Vectors
	Bonus: Communicating in the Dark is Easier with Shared Random Coins

