
4.2. GRAPH SKETCHING 49

Lemma 4.1.10. The CountSketch sketch as above but with B ≥ 15k guarantees that for any i,
query(i) returns a value xi ± ‖xtail(k)‖2/

√
k w.p. ≥ 1− δ.

4.2 Graph sketching

In this section we show the perhaps surprising result that linear sketching can be used to solve
combinatorial problems on graphs. Specifically, we consider a dynamic (multi)graph on n vertices
in which vertices can be both inserted and deleted. This model can be faithfully represented in the
strict turnstile model, where x has dimension

(
n
2

)
; xe specifies the presence (or number of copies) of

edge e in the graph. An insertion of edge e then corresponds to the turnstile update (e,+1), whereas
an edge deletion corresponds to the update (e,−1). Solving graph problems naively would require
remembering x exactly, i.e. Ω(n2) memory in the worst case. In this section we describe the “AGM
sketch” [AGM12], which shows that dynamic spanning forest can be solved using O(n logc n) bits
of memory with success probability 1 − 1/ poly(n). The AGM sketch achieves the exponent with
c = 3, though in these notes we describe a simpler version achieving c = 4. One can also obtain
bounds based on the failure probability as a separate parameter δ; see [NY19]. Note that being able
to query the dynamic spanning forest allows for solving many other problems, such as finding an s-t
path, global connectivity, or s-t connectivity. It is furthermore known that the Ω(n log3 n) bound
is tight; any algorithm that reports a spanning forest with probability at least even 1% must use
this much memory [NY19]. Yu recently showed a stronger lower bound in the distributed sketching
model, in which all vertices and a “referee” share public randomness each vertex knows only its own
neighborhood and must send a short message to the referee; he showed that even if the query is not
required to output an entire spanning forest but simply a single bit indicating whether the graph is
connected, the average message length must be Ω(log3 n) bits [Yu21] (the AGM sketch provides a
matching upper bound for spanning forest in this model as well). After the paper [AGM12], linear
sketching has been proven useful for a wide variety of dynamic graph problems; see [McG14] for a
survey.

The AGM sketch uses certain other data structures as subroutines, which we describe first.
Both these data structures operate in the general turnstile model.

4.2.1 k-sparse recovery

Recall support(x) ⊆ [n] denotes the indices i such that xi 6= 0. The parameter k is given at
the beginning of the stream, and there is a single query. The answer to a query is as follows: if
| support(x)| ≤ k, the query simply returns x exactly (the indices in the support together with their
values); otherwise, the query response can be arbitrary. We show that this problem can be solved
deterministically using O(k log(nM)) bits of memory if we are promised that all update amounts
are integers and no entry of x is ever larger than M in magnitude. Note with this restriction it
suffices to solve the problem over Fp for any prime p > M , as any xi will equal xi mod p. The
solution we discuss will also require p ≥ n, and thus we will work over any prime p > max{M,n}.
The total space will be at most 2kdlog pe bits.

Recall in linear sketching we maintain Πx in memory for some Π ∈ Rm×n (in this case Π ∈
Fm×np)). k-sparse recovery is possible iff Πx 6= Πy for x, y distinct k-sparse vectors, which is
equivalent to Π(x − y) 6= 0. Noting x − y is 2k-sparse, this requirement is thus equivalent to
Πz 6= 0 for any 2k-sparse vector z. If S denotes the support of z, then Πz = ΠSz, where ΠS is the
m × |S| submatrix of Π keeping only the columns indexed by S. Thus our requirement for Π is
that all of its m× 2k submatrices have full column rank. We will pick m = 2k, so these are square
submatrices; thus having full column rank is equivalent to det(ΠS) 6= 0 for all 2k× 2k submatrices

50 CHAPTER 4. LINEAR SKETCHING

of Π. We will specifically pick Π to be the transpose of a Vandermonde matrix. Specifically, pick
x1 6= x2 6= · · · 6= xn ∈ Fp (this is why we require p ≥ n, to guarantee at least n distinct elements in
Fp) and set Πi,j = xi−1

j mod p for i, j ∈ [n]. For concreteness, we could pick xj = j. The following
known fact, which we will not prove here, implies that any 2k × 2k submatrix of Π has nonzero
determinant.

Fact 4.2.1. Let A ∈ F r×r be such that Ai,j = xi−1
j for i, j ∈ [r] for some field F . Then

det(A) =
∏

1≤i<j≤n
(xi − xj)

The above fact is usually written for A>, but note det(A) = det(A>) for any A. Note Fact 4.2.1
implies det(A) 6= 0 if the xi are distinct.

Lemma 4.2.2. Suppose A ∈ Fm×n is such that every m×2k submatrix of A has full column rank,
where F is a field. Then there is an algorithm running in

(
n
2k

)
· poly(n) to recover x given y = Ax

for any k-sparse x.

Proof. We loop over all S ⊂ [n] of size exactly 2k (our guess for a set containing the support of
x) and compute x′ = Π−1

S y. If x′ is k-sparse, then we form x as the n-dimensional vector x with

xS = x′ and x[n]\S = ~0 and return x.

Remark 4.2.3. For the particular scheme we propose, it is possible to actually recover x from Πx
in O(k2 polylog(p)) time via an algorithm called syndrome decoding, though we will not cover it
here.

4.2.2 SupportFind

In this problem, we would like a randomized data structure which, if x = 0, reports null. Otherwise,
if x 6= 0 it should return some i ∈ support(x) with probability at least 1− δ (with probability δ it
is allowed to behave arbitrarily). There are no promises regarding the vector x; it may or may not
be sparse, yet the query algorithm should still succeed.

We describe an algorithm, the JST sketch, for this problem due to [JST11] which usesO(log(1/δ) log2 n)
bits of memory if all entries in x are promised to be integers which are at most poly(n) in mag-
nitude. It is known that this bound is optimal even if the entries of x are promised to always be
either 0 or 1 [KNP+17].

The JST sketch uses the geometric sampling technique of Subsection 2.2.3. Specifically, we pick
a hash function h : [n] → [log2 n] with P(h(i) = j) = 1/2j (other than for j = log2 n, in which
case we have P(h(i) = j) = 1/2j−1 so that the probabilities add to one). For now we assume h
is a perfectly random hash function, though we discuss in Remark 4.2.5 how this can be relaxed
using bounded independence. For each j ∈ [log2 n], we also instantiate a k-sparse recovery data
structure Aj from Subsection 4.2.1 with k = C log(1/δ) for a sufficiently large constant C > 0 and
with M = poly(n).

To process update(i,∆), we simply call Ah(i).update(i,∆). To process a query, we loop from
j = log2 n down to 1 and for each such j call Aj .query(). For the first (i.e. largest) value of j for
which the query is not the zero vector, we return any index in the support of the query response.
See Subsection 4.2.2 for pseudocode.

Theorem 4.2.4. If x = 0, null is returned with probability 1. Otherwise, the probability some
i ∈ support(x) is returned is at least 1− δ.

4.2. GRAPH SKETCHING 51

for j = log2 n, . . . , 1:
z ← Aj .query()
if z 6= 0:

return any i such that zi 6= 0
return null // x is the zero vector

Proof. The case x = 0 is clear, as all Aj will return the zero vector when queried. Also clear is the
case | support(x)| ≤ k := C log(1/δ), since every Aj will receive a vector with support size at most
that of x (and thus will return its received vector exactly), and at least one of the Aj must receive
a nonzero vector if x 6= 0 since every index of x is hashed to exactly one Aj .

For the remainder of the proof we thus focus on the case that support(x) ≥ k. Let t denote
| support(x)|. Let x(j) denote the vector x where we zero out all coordinates i such that h(i) 6= j,
and define the random variable Tj := | support(x(j))|. For some (large) constant c such that
1 < c < C, let j∗ ∈ [log2 n] be such that c log(1/δ) ≤ t/2j∗ < 2c log(1/δ). Such j∗ must exist since
t > C log(1/δ). We define two events: E1 is the event maxj≥j∗ Tj ≤ k, and E2 is the event Tj∗ ≥ 1.
Note if both events occur, then our query output is guaranteed to be correct. This is because E1

implies Aj .query() will correctly return x(j) for all j ≥ j∗, and E2 implies that at least one of these
x(j) is nonzero (since in particular x(j∗) 6= 0). We then show P(¬E1∨¬E2) ≤ δ, by the union bound.

We bound P(¬E1) itself by a union bound over j ≥ j∗. Note ETj = t/2j . Then P(Tj >
k) = P(Tj > (k2j/t) · ETj) < (k2j/t)−C

′k (see Eq. (1.7)). Summing over j ≥ j∗ gives a geo-
metric series dominated by its largest term, which is the term for j∗, which is (k2j

∗
/t)−C

′k ≤
(k/(c log(1/δ))−C

′k = (C/c)−C
′k < δ/2 for C sufficiently larger than c. P(¬E2) is also bounded by

the Chernoff bound. We have ETj∗ ∈ [c log(1/δ), 2c log(1/δ)]. Thus P(¬E2) = P(Tj∗ = 0), which is
at most δ/2 by the Chernoff bound.

Remark 4.2.5. It is a useful fact to know that tail bounds imply moment bounds and vice versa.
In one direction, if we have a bound on all moments ‖Z‖p then we have a tail bound via Markov’s
inequality: P(|Z| > λ) < infp{λ−p‖Z‖pp} (recall ‖Z‖p := (E |Z|p)1/p). The value p ≥ 1 can be
chosen to minimize the right hand side. In the other direction, ‖Z‖pp =

∫∞
0 pxp−1 P(|Z| > x)dx via

integration by parts. Thus a tail bound on |Z| yields moment bounds. Now, since the Chernoff
bound gives strong tail bounds, one can use this correspondence to obtain the implied moment
bounds on |

∑
iXi− µ| for all p ≥ 1, and from those moment bounds re-derive the Chernoff bound

itself by choosing p optimally based on λ and µ, which is determined by p-wise independence of the
Xi if p is an even integer. The punchline is that if one were to carry out this calculation exercise,
one would find that whenever the Chernoff bound yields tail probability δ, it sufficed to choose
p = O(log(1/δ)), so that the Xi could be O(log(1/δ))-wise independent (see also [BR94, SSS95],
which take different approaches to showing this). This observation allows one to select the h in the
JST sketch from an O(log(1/δ))-wise independent family, so that it only takes O(log(1/δ) log n)
bits to represent.

4.2.3 AGM sketch

Before describing the AGM sketch, we first design a non-streaming algorithm. Imagine that we
proceed in R = log2 n rounds. We start each round with a partition that is a refinement of the
partition of vertices into connected components, and in the first round each vertex is in its own
partition. Now, at the beginning of each round we ask each partition (which we henceforth call
a super-vertex) to identify an edge leaving it and entering another partition. At the end of the

