CS-GY 6763: Lecture 10 Randomized numerical linear algebra, ϵ -net arguments.

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

ANNOUNCEMENTS

- HW3 Due tonight
- HW4 out by tomorrow.
- Final Exam: In class, on the last class Monday May 9th (not during scheduled final slot Tueday May 10th!)
- Reading Group this Thursday: Atsushi will discuss the Contextual Bandits problem. Dennis and Jesse are Discussion leaders (presenters from last week).
- My office hours, moved to 4:30-5:30 Wednesday (just for this week).

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Today: randomized algorithms for sketching (compressing) matrices

- Given a dense $n \times n$ matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- Computing top eigenvectors takes $\approx O(n^2/\sqrt{\epsilon})$ time (via power method/Krylov methods from last class).

If someone asked you to speed this up and return $\underline{\mathsf{approximate}}$ top eigenvectors, what could you do?

What about approximately solving the regression problem:

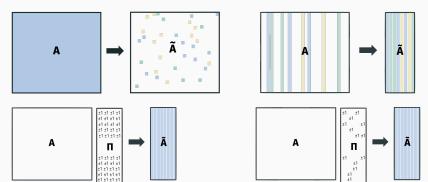
$$\begin{array}{ccc}
\hat{x} & f(\hat{x}) < f(x) + \varepsilon \\
\hat{A} & f(x) = \min_{x} ||Ax - b||_{2} \\
& |A|^{2} - b|_{C}
\end{array}$$

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors, multiply two matrices, solve a regression problem, etc.:

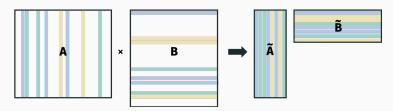
1. Compress your matrices using a randomized method (e.g. subsampling).

- 2. Solve the problem on the smaller or sparser matrix.
 - $\tilde{\mathbf{A}}$ called a "sketch" or "coreset" for \mathbf{A} .

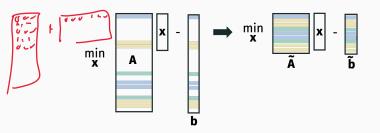


RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

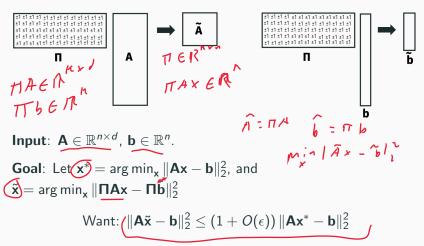


Approximate regression:



SKETCHED REGRESSION

Randomized approximate regression using a JL Matrix:



If $\Pi \in \mathbb{R}^{m \times n}$, how large does m need to be? Is it even clear this should work as $m \to \infty$?

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m=O\left(\frac{d}{\epsilon^2}\right)$ rows.¹ Then with probability 9/10, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|_{2}^{2} \le (1 + \epsilon)\|\mathbf{A}\mathbf{x}^{*} - \mathbf{b}\|_{2}^{2}$$

$$\text{where } \tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2}.$$

$$|| \prod (A_{r-b})||_{2} \sim ||A_{r-b}||_{2}^{2}$$

$$\times \in \mathbb{R}^{d} \qquad \text{Prod of Success,}$$

$$\delta := f_{n, r} \qquad n \in \text{vent} \qquad = 1 - h \cdot \delta$$

¹This can be improved to $O(d/\epsilon)$ with a tighter analysis

PLAN

- Prove this theorem using an $\underline{\epsilon}$ -net argument, which is a popular technique for applying our standard concentration inequality + union bound argument to an $\underline{\text{infinite number of}}$ events.
- These sort of arguments appear all the time in theoretical algorithms and ML research, so this lecture is as much about the technique as the final result.
- You will need to use and ϵ -net argument to prove a matrix concentration inequality on your problem set.

SKETCHED REGRESSION

Claim: Suffices to prove that for all $\mathbf{x} \in \mathbb{R}^d$,

$$(1 - \epsilon) \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_{2}^{2} \le \| \mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b} \|_{2}^{2} \le (1 + \epsilon) \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_{2}^{2}$$

$$\widehat{\mathbf{f}}(x) \qquad \widehat{\mathbf{f}}(x)$$

$$\widehat{\mathbf{x}} = \mathbf{a} \mathbf{r} \mathbf{g} \mathbf{m} \hat{\mathbf{x}} \widehat{\mathbf{f}}(x) \qquad \mathbf{x}^{+} = \mathbf{a} \mathbf{r} \mathbf{g} \mathbf{m} \hat{\mathbf{m}} \hat{\mathbf{f}}(x)$$

$$(1) \qquad \widehat{\mathbf{f}}(\widehat{\mathbf{x}}) < \widehat{\mathbf{f}}(x^{+}) < (1 + \epsilon) \widehat{\mathbf{f}}(x^{+})$$

$$\widehat{\mathbf{f}}(\widehat{\mathbf{x}}) < (1 + \epsilon) \widehat{\mathbf{f}}(\widehat{\mathbf{x}}) < (1 + \epsilon) \widehat{\mathbf{f}}(x^{+})$$

$$\widehat{\mathbf{f}}(\widehat{\mathbf{x}}) < (1 + \epsilon) \widehat{\mathbf{f}}(x^{+})$$

DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If Π is chosen to a properly scaled random Gaussian matrix, sign matrix, sparse random matrix, etc., with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed \mathbf{y} ,

$$(1 - \epsilon) \|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1 + \epsilon) \|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Corollary: For any fixed **x**, with probability $(1 - \delta)$,

$$\int (1-\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_2^2 \le (1+\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

FOR ANY TO FOR ALL

How do we go from "for any fixed \mathbf{x} " to "for all $\mathbf{x} \in \mathbb{R}^d$ ".

This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors $(\mathbf{A}\mathbf{x} - \mathbf{b})$, which can't be tackled directly with a union bound argument.

FOR ANY TO FOR ALL

How do we go from "for any fixed \mathbf{x} " to "for all $\mathbf{x} \in \mathbb{R}^d$ ".

This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors $(\mathbf{A}\mathbf{x} - \mathbf{b})$, which can't be tackled directly with a union bound argument.

Note: all vectors of the form $(\mathbf{Ax} - \mathbf{b})$ lie in a low dimensional subspace: spanned by d+1 vectors, where $\mathbf{A} \in \mathbb{R}^{n \times d}$.

Even though the set is infinite, it is only O(d)-dimensional instead of O(n).

SUBSPACE EMBEDDINGS

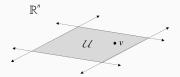
Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If

 $\Pi \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1-\epsilon)\|\mathbf{v}\|_{2}^{2} \leq \|\Pi\mathbf{v}\|_{2}^{2} \leq (1+\epsilon)\|\mathbf{v}\|_{2}^{2}$$

for $\underline{all} \ \mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)^2$.



²It's possible to obtain a slightly tighter bound of $O\left(\frac{d+\log(1/\delta)}{\epsilon^2}\right)$. It's a nice challenge to try proving this.

SUBSPACE EMBEDDING TO APPROXIMATE REGRES-SION

Corollary: If we choose Π and properly scale, then with $O\left(d/\epsilon^2\right)$ rows,

$$(1 - \epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

for all x and thus

$$\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|_{2}^{2} \le (1 + O(\epsilon)) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}.$$

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d+1) dimensional subspace spanned by **A**'s d columns and **b**. Every vector $\mathbf{A}\mathbf{x} - \mathbf{b}$ lies in this subspace.

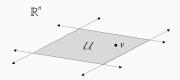
SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\Pi \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2 \tag{1}$$

for $\underline{\mathit{all}}\ \mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$



Subspace embeddings have tons of other applications!

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2 \tag{2}$$

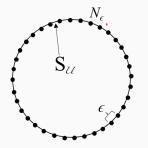
First Observation: The theorem holds as long as (2) holds for all \mathbf{w} on the unit sphere in \mathcal{U} . Denote the sphere $S_{\mathcal{U}}$:

$$S_{\mathcal{U}} = \{ \mathbf{w} \mid \mathbf{w} \in \mathcal{U} \text{ and } \|\mathbf{w}\|_2 = 1 \}.$$

Follows from linearity: Any point $\mathbf{v} \in \mathcal{U}$ can be written as $c\mathbf{w}$ for some scalar c and some point $\mathbf{w} \in \mathcal{S}_{\mathcal{U}}$.

- If $(1 \epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$.
- then $c(1-\epsilon)\|\mathbf{w}\|_2 \le c\|\mathbf{\Pi}\mathbf{w}\|_2 \le c(1+\epsilon)\|\mathbf{w}\|_2$,
- and thus $(1 \epsilon) \|c\mathbf{w}\|_2 \le \|\mathbf{\Pi} c\mathbf{w}\|_2 \le (1 + \epsilon) \|c\mathbf{w}\|_2$.

Intuition: There are not too many "different" points on a *d*-dimensional sphere:



 N_{ϵ} is called an " ϵ "-net.

$$(1-\epsilon)\|\mathbf{w}\|_2 \leq \|\Pi\mathbf{w}\|_2 \leq (1+\epsilon)\|\mathbf{w}\|_2$$

for all points $\mathbf{w} \in \mathcal{N}_{\epsilon}$, we can hopefully extend to all of $\mathcal{S}_{\mathcal{U}}$.

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{w} \in \mathcal{N}_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \leq \epsilon.$$

Take this claim to be true for now: we will prove later.

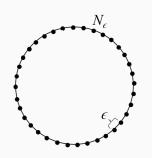
Set
$$\delta' = \left(\frac{\epsilon}{4}\right)^d \cdot \delta$$
. By a union bound, with probability $1 - \delta$, for all $\mathbf{w} \in N_{\epsilon}$, $| (N_{\epsilon}) \cdot \delta| \leq \| \| \mathbf{w} \|_2 \leq (1 + \epsilon) \| \mathbf{w} \|_2$. as long as Π has $O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$ rows.

2. Writing any point in sphere as linear comb. of points in N_{ϵ} .

For some \mathbf{w}_0 $\mathbf{w}_1, \mathbf{w}_2 \ldots \in \mathcal{N}_{\epsilon}$, any $\mathbf{v} \in \mathcal{S}_{\mathcal{U}}$ can be written:

$$\mathbf{v} = \mathbf{w}_0 + c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + \dots$$

for constants c_1, c_2, \ldots where $|c_i| \leq \epsilon^i$.



$$|v - w_0|_2^2 = |f_0|_1^2 < \mathcal{E}$$

$$c_1 = |f_0|_1^2 < C$$

$$|f_0 - c_1 w_1| < \mathcal{E}, < \mathcal{A}^2$$

$$|f_1 - c_1 w_0| < \mathcal{E}, < \mathcal{A}^2$$

$$|f_1 - c_1 w_0| < \mathcal{E}, < \mathcal{E}$$

3. Preserving norm of v.

Applying triangle inequality, we have

$$\| \mathbf{\Pi} \mathbf{v} \|_{2} = \| \mathbf{\Pi} \mathbf{w}_{0} + c_{1} \mathbf{\Pi} \mathbf{w}_{1} + c_{2} \mathbf{\Pi} \mathbf{w}_{2} + \dots \|$$

$$\leq \| \mathbf{\Pi} \mathbf{w}_{0} \| + \epsilon \| \mathbf{\Pi} \mathbf{w}_{1} \| + \epsilon^{2} \| \mathbf{\Pi} \mathbf{w}_{2} \| + \dots$$

$$\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^{2} (1 + \epsilon) + \dots$$

$$\leq 1 + O(\epsilon).$$

3. Preserving norm of v.

Similarly,

$$\|\mathbf{\Pi}\mathbf{v}\|_{2} = \|\mathbf{\Pi}\mathbf{w}_{0} + c_{1}\mathbf{\Pi}\mathbf{w}_{1} + c_{2}\mathbf{\Pi}\mathbf{w}_{2} + \dots \|$$

$$\geq \|\mathbf{\Pi}\mathbf{w}_{0}\| - \epsilon\|\mathbf{\Pi}\mathbf{w}_{1}\| - \epsilon^{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| - \dots$$

$$\geq (1 - \epsilon) - \epsilon(1 + \epsilon) - \epsilon^{2}(1 + \epsilon) - \dots$$

$$\geq 1 - O(\epsilon).$$

So we have proven

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2 \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2$$

for all $\mathbf{v} \in \mathcal{S}_{\mathcal{U}}$, which in turn implies,

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2^2$$

Adjusting ϵ proves the Subspace Embedding theorem.

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\Pi \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2 \tag{3}$$

for
$$\underline{\mathit{all}}\ \mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

Subspace embeddings have many other applications!

For example, if $m = O(k/\epsilon)$, $\Pi \mathbf{A}$ can be used to compute an approximate partial SVD, which leads to a $(1+\epsilon)$ approximate low-rank approximation for \mathbf{A} .

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

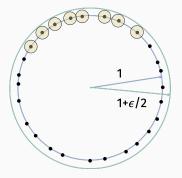
$$\min_{\mathbf{w}\in\mathcal{N}_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|\leq\epsilon.$$

Imaginary algorithm for constructing N_{ϵ} :

- Set $N_{\epsilon} = \{\}$
- While such a point exists, choose an arbitrary point $\mathbf{v} \in S_{\mathcal{U}}$ where $\nexists \mathbf{w} \in N_{\epsilon}$ with $\|\mathbf{v} \mathbf{w}\| \le \epsilon$. Set $N_{\epsilon} = N_{\epsilon} \cup \{\mathbf{w}\}$.

After running this procedure, we have $N_{\epsilon} = \{\mathbf{w}_1, \dots, \mathbf{w}_{|N_{\epsilon}|}\}$ and $\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon$ for all $\mathbf{v} \in S_{\mathcal{U}}$ as desired.

How many steps does this procedure take?



Can place a ball of radius $\epsilon/2$ around each \mathbf{w}_i without intersecting any other balls. All of these balls live in a ball of radius $1 + \epsilon/2$.

Volume of d dimensional ball of radius r is

$$vol(d,r)=c\cdot r^d,$$

where c is a constant that depends on d, but not r. From previous slide we have:

$$\begin{aligned} \operatorname{vol}(d, \epsilon/2) \cdot |N_{\epsilon}| &\leq \operatorname{vol}(d, 1 + \epsilon/2) \\ |N_{\epsilon}| &\leq \frac{\operatorname{vol}(d, 1 + \epsilon/2)}{\operatorname{vol}(d, \epsilon/2)} \\ &\leq \left(\frac{1 + \epsilon/2}{\epsilon/2}\right)^{d} \leq \left(\frac{4}{\epsilon}\right)^{d} \end{aligned}$$

TIGHTER BOUND

You can actually show that $m=O\left(\frac{d+\log(1/\delta)}{\epsilon^2}\right)$ suffices to be a d dimensional subspace embedding, instead of the bound we proved of $m=O\left(\frac{d\log(1/\epsilon)+\log(1/\delta)}{\epsilon^2}\right)$.

The trick is to show that a <u>constant</u> factor net is actually all that you need instead of an ϵ factor.

RUNTIME CONSIDERATION

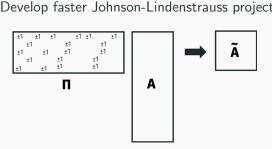
For $\epsilon, \delta = O(1)$, we need Π to have m = O(d) rows.

- Cost to solve $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$:
 - $O(nd^2)$ time for direct method. Need to compute $(A^TA)^{-1}A^T_{a}b$.
 - O(nd) · (# of iterations) time for iterative method (GD, AGD, conjugate gradient method).
- Cost to solve $\|\mathbf{\Pi}\mathbf{A}\mathbf{x} \mathbf{\Pi}\mathbf{b}\|_2^2$:
 - $O(d^3)$ time for direct method.
 - $O(d^2) \cdot (\# \text{ of iterations})$ time for iterative method.

RUNTIME CONSIDERATION

But time to compute $\Pi \mathbf{A}$ is an $(m \times n) \times (n \times d)$ matrix multiply: $O(mnd) = O(nd^2)$ time!

Goal: Develop faster Johnson-Lindenstrauss projections.



Typically using sparse and structured matrices.

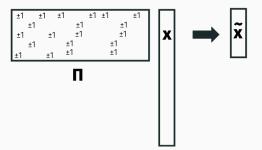
We will describe a construction where ΠA can be computed in $O(nd \log n)$ time.

After the break: Super-Fast JL Projections

RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector $\mathbf{x} \in \mathbb{R}^n$ down to $m \approx \frac{\log(1/\delta)}{\epsilon^2}$ dimensions in o(mn) time and guarantee:

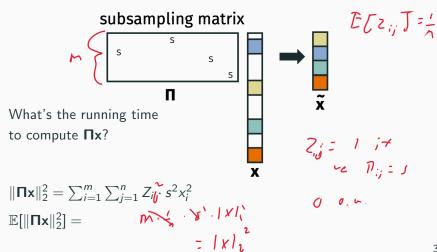
$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$



We will learn about a truly brilliant method that runs in $O(n \log n)$ time. **Preview:** Will involve Fast Fourier Transform in disguise.

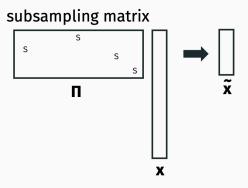
FIRST ATTEMPT

Let Π be a random sampling matrix. Every entry is equal to $s = \sqrt{n/m}$ with probability 1/n, and is zero otherwise.



FIRST ATTEMPT

So $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$ in expectation. To show it is close with high probability we would need to apply a concentration inequality. How do you think this will work out?



VARIANCE ANALYSIS

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} Z_{i} \cdot s^{2} x_{i}^{2}$$

$$\sigma^{2} = \text{Var}[\|\Pi \mathbf{x}\|_{2}^{2}]$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} s^{4} x_{i}^{4} \text{Var}[Z_{i}]$$

$$= \frac{n^{2}}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{n} x_{i}^{4}$$

$$= \frac{n}{m^{2}} \sum_{i=1}^{m} \|x\|_{4}^{4} = \frac{n}{m} \|x\|_{4}^{4}$$

VARIANCE ANALYSIS

$$\| \mathbf{\Pi} \mathbf{x} \|_{2}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} Z_{i} \cdot s^{2} x_{i}^{2}$$

$$\sigma^{2} \leq \frac{n}{m} \| \mathbf{x} \|_{4}^{4}$$

Recall Chebyshev's Inequality:

$$\Pr[|\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}] \le 10 \cdot \sigma] \le \frac{1}{100}$$

We want additive error $\left| \| \mathbf{\Pi} \mathbf{x} \|_2^2 - \| \mathbf{x} \|_2^2 \right| \le \epsilon \| \mathbf{x} \|_2^2$

VARIANCE ANALYSIS

We need to choose m so that:

so that:
$$\int_{\mathcal{T}_n} \langle \cdot \cdot \rangle$$

$$10\sqrt{\frac{n}{m}} \|\mathbf{x}\|_4^2 \le \epsilon \|\mathbf{x}\|_2^2. \qquad \int_{\mathcal{T}_n} \langle \cdot \cdot \cdot \rangle$$

$$\sim 7 \frac{1}{4} 2$$

How do these two two norms compare?

$$\|\mathbf{x}\|_4^2 = \left(\sum_{i=1}^n x_i^4\right)^{1/2}$$

$$\|\mathbf{x}\|_2^2 = \sum_{i=1}^n x_i^2$$

Consider 2 extreme cases:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}.$$

$$|\mathbf{x}|_{\nu} = \int_{\mathbf{x}} \mathbf{x}$$

VARIANCE FOR SMOOOTH FUNCTIONS

We need to choose *m* so that:

$$\frac{1}{10}\sqrt{\frac{n}{m}}\|\mathbf{x}\|_4^2 \le \epsilon \|\mathbf{x}\|_2^2.$$

Suppose **x** is very evenly distributed. I.e., for all $i \in 1, \ldots, n$,

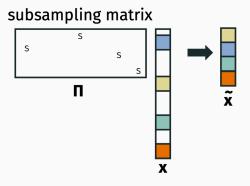
$$x_i^2 \le \frac{c}{n} \sum_{i=1}^n x_i^2 = \frac{c}{n} \|\mathbf{x}\|_2^2$$

Claim: $\|\mathbf{x}\|_4^2 \le \frac{c}{\sqrt{n}} \|\mathbf{x}\|_2^2$. So $m = O(c/\epsilon^2)$ samples suffices.³

³Using the right Bernstein bound we can prove $m = O(c \log(1/\delta)/\epsilon^2)$ suffices for failure probability δ .

VECTOR SAMPLING

So sampling does work to preserve the norm of x, but only when the vector is relatively "smooth" (not concentrated). Do we expect to see such vectors in the wild?



THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT) (Ailon-Chazelle, 2006)

Key idea: First multiply **x** by a "mixing matrix" **M** which ensures it cannot be too concentrated in one place.

M should have the property that $\|\mathbf{M}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$ exactly, or is very close. Then we will multiply by a subsampling matrix **S** to do the actual dimensionality reduction:

$$\Pi x = SMx$$

Oh... and M needs to be fast to multiply by!

THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

For this approach to work, we need to be able to compute **Mx** very quickly. So we will use a **pseudorandom** matrix instead.

THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT) (Ailon-Chazelle, 2006)

$$\Pi = SM$$
 where $M = HD$:

- **D** ∈ $n \times n$ is a diagonal matrix with each entry uniform ± 1 .
- $\mathbf{H} \in n \times n$ is a Hadamard matrix.

The Hadarmard matrix is an <u>othogonal</u> matrix closely related to the <u>discrete Fourier matrix</u>. It has two critical properties:

- 1. $\|\mathbf{H}\mathbf{v}\|_{2}^{2} = \|\mathbf{v}\|_{2}^{2}$ exactly. Thus $\|\mathbf{H}\mathbf{D}\mathbf{x}\|_{2}^{2} = \|\mathbf{x}\|_{2}^{2}$
- 2. $\|\mathbf{H}\mathbf{v}\|_2^2$ can be computed in $O(n \log n)$ time.

HADAMARD MATRICES RECURSIVE DEFINITION

Assume that n is a power of 2. For k = 0, 1, ..., the k^{th} Hadamard matrix \mathbf{H}_k is a $2^k \times 2^k$ matrix defined by:

$$H_{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix} \times$$

The $n \times n$ Hadamard matrix has all entries as $\pm \frac{1}{\sqrt{n}}$.

HADAMARD MATRICES ARE ORTHOGONAL

Property 1: For any k = 0, 1, ..., we have $\|\mathbf{H}_k \mathbf{v}\|_2^2 = \|\mathbf{v}\|_2^2$ for all \mathbf{v} . I.e., \mathbf{H}_k is orthogonal. $\|\mathbf{H}_k \mathbf{v}\|_2^2 = \|\mathbf{v}\|_2^2$ for all

$$H_{k}H_{k}^{T} = \frac{1}{2} \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix} \begin{bmatrix} H_{k} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}^{T}$$

$$= \frac{1}{2} \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix} \begin{bmatrix} H_{k} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}^{T}$$

$$= \frac{1}{2} \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} & -H_{k-1} \end{bmatrix} = I$$

$$H_{k-1} & H_{k-1} & -H_{k-1} & H_{k-1} & -H_{k-1} \end{bmatrix} = I$$

HADAMARD MATRICES

Property 2: Can compute $\Pi x = \{HDx \text{ in } O(n \log n) \text{ time.} \}$

This is a nice exercise...can use recursion.

RANDOMIZED HADAMARD TRANSFORM

Property 3: The randomized Hadamard matrix is a good "mixing matrix" for smoothing out vectors.

Blue squares are $1/\sqrt{n}$'s, white squares are $-1/\sqrt{n}$'s.

RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)

Let \mathbf{H} be an $(n \times n)$ Hadamard matrix and \mathbf{D} a random ± 1 diagonal matrix. Let $\mathbf{z} = \mathbf{H}\mathbf{D}\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^n$. With probability $1 - \delta$,

$$(z_i)^2 \leq \frac{c \log(n/\delta)}{n} \|\mathbf{z}\|_2^2$$

for some fixed constant c.

The vector is very close to uniform with high probability. As we saw earlier, we can thus argue that $\|\mathbf{S}\mathbf{z}\|_2^2 \approx \|\mathbf{z}\|_2^2$. I.e. that:

$$\|\boldsymbol{\Pi}\boldsymbol{x}\|_2^2 = \|\boldsymbol{S}\boldsymbol{H}\boldsymbol{D}\boldsymbol{x}\|_2^2 \approx \|\boldsymbol{x}\|_2^2$$

JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (The Fast JL Lemma)

Let $\Pi = \mathbb{R} \cap \mathbb{R} \cap \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed \mathbf{x} ,

$$|\mathbf{1} - \epsilon| \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi} \mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

with probability $(1 - \delta)$.

Very little loss in embedding dimension compared to full random matrix, and Π can be multiplied by \mathbf{x} in $O(n \log n)$ (nearly linear) time.

RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: Need to prove $(z_i)^2 \le \frac{c \log(n/\delta)}{n} ||\mathbf{z}||_2^2 \frac{for all i}{n}$.

Let \mathbf{h}_i^T be the i^{th} row of \mathbf{H} . $z_i = \mathbf{h}_i^T \mathbf{D} \mathbf{x}$ where:

$$\mathbf{h}_{i}^{T}\mathbf{D} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & \dots & -1 & -1 \end{bmatrix} \begin{bmatrix} D_{1} & & & \\ & D_{2} & & \\ & & \ddots & \\ & & & D_{n} \end{bmatrix}$$

where D_1, \ldots, D_n are random ± 1 's.

This is equivalent to-

$$\left(\mathbf{h}_{i}^{T}\mathbf{D} = \frac{1}{\sqrt{n}} \begin{bmatrix} R_{1} & R_{2} & \dots & R_{n} \end{bmatrix},\right)$$

where R_1, \ldots, R_n are random ± 1 's.

RANDOMIZED HADAMARD ANALYSIS

So we have, for all $i, \mathbf{z}_i = \mathbf{h}_i^T \mathbf{D} \mathbf{x} = \frac{1}{\sqrt{n}} \sum_{i=1}^n R_i x_i$

- \mathbf{z}_i is a random variable with mean 0 and variance $\frac{1}{n} ||\mathbf{x}||_2^2$, and is a sum of independent random variables.
- By Central Limit Theorem, we expect that:

$$\Pr[|\mathbf{z}_i| \geq t \cdot \frac{\|\mathbf{x}\|_2}{\sqrt{n}}] \leq e^{-O(t^2)}.$$

• Setting $t = \sqrt{\log(n/\delta)}$, we have for constant c,

$$\Pr\left[|\mathbf{z}_i| \geq c\sqrt{\frac{\log(n/\delta)}{n}}\|\mathbf{y}\|_2\right] \leq \frac{\delta}{n}$$

 Applying a union bound to all n entries of z gives the SHRT mixing lemma.

RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality to prove the bound:

Lemma (Rademacher Concentration)

Let R_1, \ldots, R_n be Rademacher random variables (i.e. uniform ± 1 's). Then for any vector $\mathbf{a} \in \mathbb{R}^n$,

$$\Pr\left[\sum_{i=1}^n R_i a_i \ge t \|\mathbf{a}\|_2\right] \le e^{-t^2/2}.$$

This is call the Khintchine Inequality. It is specialized to sums of scaled ± 1 's, and is a bit tighter and easier to apply than using a generic Bernstein bound.

FINISHING UP

With probability $1 - \delta$, we have that all $\mathbf{z}_i \leq \sqrt{\frac{c \log(n/\delta)}{n}} \|\mathbf{c}\|_2$.

As shown earlier, we can thus guarantee that:

$$(1 - \epsilon) \|\mathbf{z}\|_2^2 \le \|\mathbf{S}\mathbf{z}\|_2^2 \le (1 + \epsilon) \|\mathbf{z}\|_2^2$$

as long as $\mathbf{S} \in \mathbb{R}^{m \times n}$ is a random sampling matrix with

$$m = O\left(\frac{\log(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$$
 rows.

$$\|\mathbf{S}\mathbf{z}\|_2^2 = \|\mathbf{S}\mathbf{H}\mathbf{D}\mathbf{x}\|_2^2 = \|\mathbf{\Pi}\mathbf{x}\|_2^2 \text{ and } \|\mathbf{z}\|_2^2 = \|\mathbf{x}\|_2^2, \text{ so we are done.}$$

JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (The Fast JL Lemma)

Let $\Pi = \S HD \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed \mathbf{x} ,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

with probability $(1 - \delta)$.

Upshot for regression: Compute ΠA in $O(nd \log n)$ time instead of $O(nd^2)$ time. Compress problem down to \tilde{A} with $O(d^2)$ dimensions.

$$\tilde{O}(n_0+1)$$
 Vs $O(n_1^2)$

BRIEF COMMENT ON OTHER METHODS

$$O(nd \log n)$$
 is nearly linear in the size of **A** when **A** is dense to compute **A** with poly(d) rows in:

 $O(nd \log n)$ is nearly linear in the size of **A** when **A** is dense to compute **A** with poly(d) rows in:

 $O(nnz(\mathbf{A}))$ time.

- •
 ⊓ is chosen to be an ultra-sparse random matrix (spoiler:
 ⊓ is count-sketch!).
- Uses totally different techniques (you can't do JL $+ \epsilon$ -net).

Lead to a whole close of matrix algorithms (for regression, SVD, etc.) which run in time:

$$O(\mathsf{nnz}(\mathbf{A})) + \mathsf{poly}(d, \epsilon).$$