
CS-GY 6763: Lecture 10

Randomized numerical linear algebra, ϵ-net

arguments.

NYU Tandon School of Engineering, Prof. Rajesh Jayaram
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ANNOUNCEMENTS

� HW3 Due tonight

� HW4 out by tomorrow.

� Final Exam: In class, on the last class Monday May 9th (not

during scheduled final slot Tueday May 10th!)

� Reading Group this Thursday: Atsushi will discuss the

Contextual Bandits problem. Dennis and Jesse are Discussion

leaders (presenters from last week).

� My office hours, moved to 4:30-5:30 Wednesday (just for this

week).
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Today: randomized algorithms for sketching (compressing)

matrices

� Given a dense n × n matrix A ∈ Rn×n.

� Computing top eigenvectors takes ≈ O(n2/
√
ϵ) time (via

power method/Krylov methods from last class).

If someone asked you to speed this up and return approximate top

eigenvectors, what could you do?

What about approximately solving the regression problem:

min
x

∥Ax − b∥2
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors, multiply two

matrices, solve a regression problem, etc.:

1. Compress your matrices using a randomized method (e.g.

subsampling).
2. Solve the problem on the smaller or sparser matrix.

� Ã called a “sketch” or “coreset” for A.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

Approximate regression:
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SKETCHED REGRESSION

Randomized approximate regression using a JL Matrix:

Input: A ∈ Rn×d , b ∈ Rn.

Goal: Let x∗ = argminx ∥Ax− b∥22, and
x̃ = argminx ∥ΠAx−Πb̃∥22

Want: ∥Ax̃− b∥22 ≤ (1 + O(ϵ)) ∥Ax∗ − b∥22

If Π ∈ Rm×n, how large does m need to be? Is it even clear this

should work as m → ∞?
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TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign,

sparse random, etc.) with m = O
(
d
ϵ2

)
rows.1 Then with

probability 9/10, for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃− b∥22 ≤ (1 + ϵ)∥Ax∗ − b∥22

where x̃ = argminx ∥ΠAx−Πb∥22.

1This can be improved to O(d/ϵ) with a tighter analysis
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PLAN

� Prove this theorem using an ϵ-net argument, which is a

popular technique for applying our standard concentration

inequality + union bound argument to an infinite number of

events.

� These sort of arguments appear all the time in theoretical

algorithms and ML research, so this lecture is as much about

the technique as the final result.

� You will need to use and ϵ-net argument to prove a matrix

concentration inequality on your problem set.
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SKETCHED REGRESSION

Claim: Suffices to prove that for all x ∈ Rd ,

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1 + ϵ)∥Ax− b∥22
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DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If Π is chosen to a properly scaled random Gaussian matrix, sign

matrix, sparse random matrix, etc., with O
(
log(1/δ)

ϵ2

)
rows then

for any fixed y,

(1− ϵ)∥y∥22 ≤ ∥Πy∥22 ≤ (1 + ϵ)∥y∥22

with probability (1− δ).

Corollary: For any fixed x, with probability (1− δ),

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1 + ϵ)∥Ax− b∥22.

10

rajes
Pencil



FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x ∈ Rd”.

This statement requires establishing a Johnson-Lindenstrauss type

bound for an infinity of possible vectors (Ax− b), which can’t be

tackled directly with a union bound argument.

11



FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x ∈ Rd”.

This statement requires establishing a Johnson-Lindenstrauss type

bound for an infinity of possible vectors (Ax− b), which can’t be

tackled directly with a union bound argument.

Note: all vectors of the form (Ax− b) lie in a low dimensional

subspace: spanned by d + 1 vectors, where A ∈ Rn×d .

Even though the set is infinite, it is only O(d)-dimensional

instead of O(n).
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If

Π ∈ Rm×d is chosen from any distribution D satisfying the

Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1 + ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)
2.

2It’s possible to obtain a slightly tighter bound of O
(

d+log(1/δ)

ϵ2

)
. It’s a nice

challenge to try proving this.
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SUBSPACE EMBEDDING TO APPROXIMATE REGRES-

SION

Corollary: If we choose Π and properly scale, then with O
(
d/ϵ2

)
rows,

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1 + ϵ)∥Ax− b∥22

for all x and thus

∥Ax̃− b∥22 ≤ (1 + O(ϵ))min
x

∥Ax− b∥22.

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d + 1)

dimensional subspace spanned by A’s d columns and b. Every

vector Ax− b lies in this subspace.
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If

Π ∈ Rm×d is chosen from any distribution D satisfying the

Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1 + ϵ)∥v∥22 (1)

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)

Subspace embeddings have tons of other applications!
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SUBSPACE EMBEDDING PROOF

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1 + ϵ)∥v∥22 (2)

First Observation: The theorem holds as long as (2) holds for all

w on the unit sphere in U . Denote the sphere SU :

SU = {w |w ∈ U and ∥w∥2 = 1}.

Follows from linearity: Any point v ∈ U can be written as cw for

some scalar c and some point w ∈ SU .

� If (1− ϵ)∥w∥2 ≤ ∥Πw∥2 ≤ (1 + ϵ)∥w∥2.
� then c(1− ϵ)∥w∥2 ≤ c∥Πw∥2 ≤ c(1 + ϵ)∥w∥2,
� and thus (1− ϵ)∥cw∥2 ≤ ∥Πcw∥2 ≤ (1 + ϵ)∥cw∥2.
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SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a

d-dimensional sphere:

Nϵ is called an “ϵ”-net.

If we can prove

(1− ϵ)∥w∥2 ≤ ∥Πw∥2 ≤ (1 + ϵ)∥w∥2

for all points w ∈ Nϵ, we can hopefully extend to all of SU . 17
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ϵ-NET FOR THE SPHERE

Lemma (ϵ-net for the sphere)

For any ϵ ≤ 1, there exists a set Nϵ ⊂ SU with |Nϵ| =
(
4
ϵ

)d
such

that ∀v ∈ SU ,

min
w∈Nϵ

∥v −w∥ ≤ ϵ.

Take this claim to be true for now: we will prove later.
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SUBSPACE EMBEDDING PROOF

1. Preserving norms of all points in net Nϵ.

Set δ′ =
(
ϵ
4

)d · δ. By a union bound, with probability 1− δ, for all

w ∈ Nϵ,

(1− ϵ)∥w∥2 ≤ ∥Πw∥2 ≤ (1 + ϵ)∥w∥2.

as long as Π has O
(
log(1/δ′)

ϵ2

)
= O

(
d log(1/ϵ)+log(1/δ)

ϵ2

)
rows.
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SUBSPACE EMBEDDING PROOF

2. Writing any point in sphere as linear comb. of points in

Nϵ.

For some w0,w1,w2 . . . ∈ Nϵ, any v ∈ SU . can be written:

v = w0 + c1w1 + c2w2 + . . .

for constants c1, c2, . . . where |ci | ≤ ϵi .
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SUBSPACE EMBEDDING PROOF

3. Preserving norm of v.

Applying triangle inequality, we have

∥Πv∥2 = ∥Πw0 + c1Πw1 + c2Πw2 + . . . ∥
≤ ∥Πw0∥+ ϵ∥Πw1∥+ ϵ2∥Πw2∥+ . . .

≤ (1 + ϵ) + ϵ(1 + ϵ) + ϵ2(1 + ϵ) + . . .

≤ 1 + O(ϵ).
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SUBSPACE EMBEDDING PROOF

3. Preserving norm of v.

Similarly,

∥Πv∥2 = ∥Πw0 + c1Πw1 + c2Πw2 + . . . ∥
≥ ∥Πw0∥ − ϵ∥Πw1∥ − ϵ2∥Πw2∥ − . . .

≥ (1− ϵ)− ϵ(1 + ϵ)− ϵ2(1 + ϵ)− . . .

≥ 1− O(ϵ).
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SUBSPACE EMBEDDING PROOF

So we have proven

(1− O(ϵ)) ∥v∥2 ≤ ∥Πv∥2 ≤ (1 + O(ϵ)) ∥v∥2

for all v ∈ SU , which in turn implies,

(1− O(ϵ)) ∥v∥22 ≤ ∥Πv∥22 ≤ (1 + O(ϵ)) ∥v∥22

Adjusting ϵ proves the Subspace Embedding theorem.

23



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If

Π ∈ Rm×d is chosen from any distribution D satisfying the

Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1 + ϵ)∥v∥22 (3)

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)
Subspace embeddings have many other applications!

For example, if m = O(k/ϵ), ΠA can be used to compute an

approximate partial SVD, which leads to a (1 + ϵ) approximate

low-rank approximation for A.
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ϵ-NET FOR THE SPHERE

Lemma (ϵ-net for the sphere)

For any ϵ ≤ 1, there exists a set Nϵ ⊂ SU with |Nϵ| =
(
4
ϵ

)d
such

that ∀v ∈ SU ,

min
w∈Nϵ

∥v −w∥ ≤ ϵ.

Imaginary algorithm for constructing Nϵ:

� Set Nϵ = {}
� While such a point exists, choose an arbitrary point v ∈ SU

where ∄w ∈ Nϵ with ∥v −w∥ ≤ ϵ. Set Nϵ = Nϵ ∪ {w}.

After running this procedure, we have Nϵ = {w1, . . . ,w|Nϵ|} and

minw∈Nϵ ∥v −w∥ ≤ ϵ for all v ∈ SU as desired.
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ϵ-NET FOR THE SPHERE

How many steps does this procedure take?

Can place a ball of radius ϵ/2 around each wi without intersecting

any other balls. All of these balls live in a ball of radius 1 + ϵ/2.
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ϵ-NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

vol(d , r) = c · rd ,

where c is a constant that depends on d , but not r . From previous

slide we have:

vol(d , ϵ/2) · |Nϵ| ≤ vol(d , 1 + ϵ/2)

|Nϵ| ≤
vol(d , 1 + ϵ/2)

vol(d , ϵ/2)

≤
(
1 + ϵ/2

ϵ/2

)d

≤
(
4

ϵ

)d
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TIGHTER BOUND

You can actually show that m = O
(
d+log(1/δ)

ϵ

)
suffices to be a d

dimensional subspace embedding, instead of the bound we proved

of m = O
(
d log(1/ϵ)+log(1/δ)

ϵ

)
.

The trick is to show that a constant factor net is actually all that

you need instead of an ϵ factor.

28

rajes
Pencil



RUNTIME CONSIDERATION

For ϵ, δ = O(1), we need Π to have m = O(d) rows.

� Cost to solve ∥Ax− b∥22:
� O(nd2) time for direct method. Need to compute

(ATA)−1ATb.

� O(nd) · (# of iterations) time for iterative method (GD, AGD,

conjugate gradient method).

� Cost to solve ∥ΠAx−Πb∥22:
� O(d3) time for direct method.

� O(d2) · (# of iterations) time for iterative method.
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RUNTIME CONSIDERATION

But time to compute ΠA is an (m × n)× (n × d) matrix multiply:

O(mnd) = O(nd2) time!

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse and structured matrices.

We will describe a construction where ΠA can be computed in

O(nd log n) time.
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After the break: Super-Fast JL Projections
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RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x ∈ Rn down to

m ≈ log(1/δ)
ϵ2

dimensions in o(mn) time and guarantee:

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1 + ϵ)∥x∥22

We will learn about a truly brilliant method that runs in O(n log n)

time. Preview: Will involve Fast Fourier Transform in disguise.
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FIRST ATTEMPT

Let Π be a random sampling matrix. Every entry is equal to

s =
√
n/m with probability 1/n, and is zero otherwise.

What’s the running time

to compute Πx?

∥Πx∥22 =
∑m

i=1

∑n
j=1 Zi · s2x2i

E[∥Πx∥22] =

32
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FIRST ATTEMPT

So E∥Πx∥22 = ∥x∥22 in expectation. To show it is close with high

probability we would need to apply a concentration inequality. How

do you think this will work out?
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VARIANCE ANALYSIS

∥Πx∥22 =
∑m

i=1

∑n
j=1 Zi · s2x2i

σ2 = Var[∥Πx∥22]

=
m∑
i=1

n∑
j=1

s4x4i Var[Zi ]

=
n2

m2

m∑
i=1

n∑
j=1

1

n
x4i

=
n

m2

m∑
i=1

∥x∥44 =
n

m
∥x∥44
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VARIANCE ANALYSIS

∥Πx∥22 =
∑m

i=1

∑n
j=1 Zi · s2x2i

σ2 ≤ n
m∥x∥44

Recall Chebyshev’s Inequality:

Pr[
∣∣∥Πx∥22 − ∥x∥22

∣∣ ≤ 10 · σ] ≤ 1

100

We want additive error
∣∣∥Πx∥22 − ∥x∥22

∣∣ ≤ ϵ∥x∥22
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VARIANCE ANALYSIS

We need to choose m so that:

10

√
n

m
∥x∥24 ≤ ϵ∥x∥22.

How do these two two norms compare?

∥x∥24 =

(
n∑

i=1

x4i

)1/2

∥x∥22 =
n∑

i=1

x2i

Consider 2 extreme cases:

x =


1

0
...

0

 x =


1

1
...

1

 .
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VARIANCE FOR SMOOOTH FUNCTIONS

We need to choose m so that:

1

10

√
n

m
∥x∥24 ≤ ϵ∥x∥22.

Suppose x is very evenly distributed. I.e., for all i ∈ 1, . . . , n,

x2i ≤ c

n

n∑
i=1

x2i =
c

n
∥x∥22

Claim: ∥x∥24 ≤ c√
n
∥x∥22. So m = O(c/ϵ2) samples suffices.3

3Using the right Bernstein bound we can prove m = O(c log(1/δ)/ϵ2) suffices

for failure probability δ.
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VECTOR SAMPLING

So sampling does work to preserve the norm of x, but only when

the vector is relatively “smooth” (not concentrated). Do we expect

to see such vectors in the wild?
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)

(Ailon-Chazelle, 2006)

Key idea: First multiply x by a “mixing matrix” M which ensures

it cannot be too concentrated in one place.

M should have the property that ∥Mx∥22 = ∥x∥22 exactly, or is very

close. Then we will multiply by a subsampling matrix S to do the

actual dimensionality reduction:

Πx = SMx

Oh... and M needs to be fast to multiply by!
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

For this approach to work, we need to be able to compute Mx very

quickly. So we will use a pseudorandom matrix instead.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)

(Ailon-Chazelle, 2006)

Π = SM where M = HD:

� D ∈ n × n is a diagonal matrix with each entry uniform ±1.

� H ∈ n × n is a Hadamard matrix.

The Hadarmard matrix is an othogonal matrix closely related to

the discrete Fourier matrix. It has two critical properties:

1. ∥Hv∥22 = ∥v∥22 exactly. Thus ∥HDx∥22 = ∥x∥22
2. ∥Hv∥22 can be computed in O(n log n) time.
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HADAMARD MATRICES RECURSIVE DEFINITION

Assume that n is a power of 2. For k = 0, 1, . . . , the kth

Hadamard matrix Hk is a 2k × 2k matrix defined by:

H0 = 1 H1 =
1√
2

[
1 1

1 −1

]
H2 =

1√
4


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



Hk =
1√
2

[
Hk−1 Hk−1

Hk−1 −Hk−1

]

The n × n Hadamard matrix has all entries as ± 1√
n
.
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HADAMARD MATRICES ARE ORTHOGONAL

Property 1: For any k = 0, 1, . . ., we have ∥Hkv∥22 = ∥v∥22 for all

v. I.e., Hk is orthogonal.

HkH
T
k =

1

2

[
Hk−1 Hk−1

Hk−1 −Hk−1

][
Hk−1 Hk−1

Hk−1 −Hk−1

]
=
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HADAMARD MATRICES

Property 2: Can compute Πx = SHDx in O(n log n) time.

This is a nice exercise...can use recursion.
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RANDOMIZED HADAMARD TRANSFORM

Property 3: The randomized Hadamard matrix is a good “mixing

matrix” for smoothing out vectors.

Deterministic

Hadamard matrix.

Randomized Hadamard

PHD.

Fully random sign

matrix.

Blue squares are 1/
√
n’s, white squares are −1/

√
n’s.
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RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)

Let H be an (n × n) Hadamard matrix and D a random ±1

diagonal matrix. Let z = HDx for x ∈ Rn. With probability 1− δ,

(zi )
2 ≤ c log(n/δ)

n
∥z∥22

for some fixed constant c .

The vector is very close to uniform with high probability. As

we saw earlier, we can thus argue that ∥Sz∥22 ≈ ∥z∥22. I.e. that:

∥Πx∥22 = ∥SHDx∥22 ≈ ∥x∥22
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JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (The Fast JL Lemma)

Let Π = SHD ∈ Rm×n be a subsampled randomized Hadamard

transform with m = O
(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then for any fixed

x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1 + ϵ)∥x∥22

with probability (1− δ).

Very little loss in embedding dimension compared to full random

matrix, and Π can be multiplied by x in O(n log n) (nearly linear)

time.
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RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: Need to prove (zi )
2 ≤ c log(n/δ)

n ∥z∥22
for all i .

Let hTi be the i th row of H. zi = hTi Dx where:

hTi D =
1√
n

[
1 1 . . . −1 −1

]

D1

D2

. . .

Dn


where D1, . . . ,Dn are random ±1’s.

This is equivalent to

hTi D =
1√
n

[
R1 R2 . . . Rn

]
,

where R1, . . . ,Rn are random ±1’s.
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RANDOMIZED HADAMARD ANALYSIS

So we have, for all i , zi = hTi Dx = 1√
n

∑n
i=1 Rixi .

� zi is a random variable with mean 0 and variance 1
n∥x∥

2
2, and

is a sum of independent random variables.

� By Central Limit Theorem, we expect that:

Pr[|zi | ≥ t · ∥x∥2√
n
] ≤ e−O(t2).

� Setting t =
√

log(n/δ), we have for constant c ,

Pr

[
|zi | ≥ c

√
log(n/δ)

n
∥y∥2

]
≤ δ

n

.

� Applying a union bound to all n entries of z gives the SHRT

mixing lemma.
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RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality to

prove the bound:

Lemma (Rademacher Concentration)

Let R1, . . . ,Rn be Rademacher random variables (i.e. uniform

±1’s). Then for any vector a ∈ Rn,

Pr

[
n∑

i=1

Riai ≥ t∥a∥2

]
≤ e−t2/2.

This is call the Khintchine Inequality. It is specialized to sums of

scaled ±1’s, and is a bit tighter and easier to apply than using a

generic Bernstein bound.
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FINISHING UP

With probability 1− δ, we have that all zi ≤
√

c log(n/δ)
n ∥c∥2.

As shown earlier, we can thus guarantee that:

(1− ϵ)∥z∥22 ≤ ∥Sz∥22 ≤ (1 + ϵ)∥z∥22

as long as S ∈ Rm×n is a random sampling matrix with

m = O

(
log(n/δ) log(1/δ)

ϵ2

)
rows.

∥Sz∥22 = ∥SHDx∥22 = ∥Πx∥22 and ∥z∥22 = ∥x∥22, so we are done.
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JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (The Fast JL Lemma)

Let Π = SHD ∈ Rm×n be a subsampled randomized Hadamard

transform with m = O
(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then for any fixed

x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1 + ϵ)∥x∥22

with probability (1− δ).

Upshot for regression: Compute ΠA in O(nd log n) time instead

of O(nd2) time. Compress problem down to Ã with O(d2)

dimensions.
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BRIEF COMMENT ON OTHER METHODS

O(nd log n) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Possible to

compute Ã with poly(d) rows in:

O (nnz(A)) time.

� Π is chosen to be an ultra-sparse random matrix (spoiler: Π is

count-sketch!).

� Uses totally different techniques (you can’t do JL + ϵ-net).

Lead to a whole close of matrix algorithms (for regression, SVD,

etc.) which run in time:

O (nnz(A)) + poly(d , ϵ). 53
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