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Review of Last Class

Main idea: If you want to compute singular vectors or eigenvectors,

multiply two matrices, solve a regression problem, then

1. Compress matrices using randomized method

2. Solve the problem on the smaller or sparser matrix

2



Beyond the Hadamard Transform

The Hadamard Transform is closely related to the Discrete Fourier

Transform.

Fj ,k = e
�2⇡i j·kn , F

⇤
F = I.

Real part of Fj ,k .

Fy computes the Discrete Fourier Transform of the vector y. Can

be computed in O(n log n) time using a divide and conquer

algorithm (the Fast Fourier Transform). 3



The Uncertainty Principal

The Uncertainty Principal (informal): A function and it’s

Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.
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The Uncertainty Principal

Sampling does not preserve norms, i.e., kSyk2 6⇡ kyk2 when y has

a few large entries.

Taking a Fourier transform exactly eliminates this hard case,

without changing y’s norm.

One of the central tools in the field of sparse recovery aka

compressed sensing.
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Sparse Recovery/Compressed Sensing Problem Setup

Underdetermined linear regression: Given A 2 Rm⇥n with

m < n, b 2 Rm. Assume b = Ax for some x 2 Rn.

• Infinite possible solutions y to Ay = b, so in general, it is

impossible to recover parameter vector x from the data A,b.
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Sparsity Recovery/Compressed Sensing

Underdetermined linear regression: Given A 2 Rm⇥n with

m < n, b 2 Rm. Solve Ax = b for x.

• Assume x is k-sparse for small k . kxk0 = k .

• In many cases can recover x with ⌧ n rows. In fact, often

⇠ O(k) su�ce.

• Need additional assumptions about A!
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Motivation

• In statistics and machine learning, we often think about A’s

rows as data drawn from some universe/distribution:

• In other settings, we will get to choose A’s rows. That is,

each bi = x
T
ai for some vector ai that we select.

• In the later case, we often call bi a linear measurement of x

and we call A a measurement matrix.
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Assumptions on Measurement Matrix

When should this problem be di�cult?
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Assumptions on Measurement Matrix

Many ways to formalize our intuition

• A has Kruskal rank r . All sets of r columns in A are linearly
independent.

• Recover vectors x with sparsity k = r/2.

• A is µ-incoherent. |AT
i Aj |  µkAik2kAjk2 for all columns

Ai ,Aj , i 6= j .

• Recover vectors x with sparsity k = 1/µ.

• Focus today: A obeys the Restricted Isometry Property.
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Restricted Isometry Property

Definition ((q, ✏)-Restricted Isometry Property)

A matrix A satisfies (q, ✏)-RIP if, for all x with kxk0  q,

(1� ✏)kxk22  kAxk22  (1 + ✏)kxk22.

• Johnson-Lindenstrauss type condition.

• A preserves the norm of all q sparse vectors, instead of the

norms of a fixed discrete set of vectors, or all vectors in a

subspace (as in subspace embeddings).

11



First Sparse Recovery Result

Theorem (`0-minimization)

Suppose we are given A 2 Rm⇥n
and b = Ax for an unknown

k-sparse x 2 Rn
. If A is (2k , ✏)-RIP for any ✏ < 1 then x is the

unique minimizer of:

minkzk0 subject to Az = b.

• Establishes that information theoretically we can recover x.

Solving the `0-minimization problem is computationally

di�cult, requiring O(nk) time. We will address faster recovery

shortly.
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First Sparse Recovery Result

Claim: If A is (2k , ✏)-RIP for any ✏ < 1 then x is the unique

minimizer of minAz=b kzk0.

Proof: By contradiction, assume there is some y 6= x such that

Ay = b, kyk0  kxk0.
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Robustness

Important note: Robust versions of this theorem and the others

we will discuss exist. These are much more important practically.

Here’s a flavor of a robust result:

• Suppose b = A(x+ e) where x is k-sparse and e is dense but

has bounded norm.

• Recover some k-sparse x̃ such that:

kx̃� xk2  kek1

or even

kx̃� xk2  O

✓
1p
k

◆
kek1.
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Robustness

We will not discuss robustness in detail, but along with

computational considerations, it is a big part of what has made

compressed sensing such an active research area in the last 20

years. Non-robust compressed sensing results have been known for

a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur les

lois de la dilatabilite de fluides elastique et sur celles de la force

expansive de la vapeur de l’alcool, a di↵erentes temperatures.

Journal de l’Ecole Polytechnique, 24–76. 1795.

15



Restricted Isometry Property

What matrices satisfy this property?

• Random Johnson-Lindenstrauss matrices (Gaussian, sign, etc.)

with m = O(k log(n/k)
✏2 ) rows are (k , ✏)-RIP.

Some real world data may look random, but this is also a useful

observation algorithmically when we want to design A.
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Restricted Isometry Property

Definition ((q, ✏)-Restricted Isometry Property – Candes,

Tao ’05)

A matrix A satisfies (q, ✏)-RIP if, for all x with kxk0  q,

(1� ✏)kxk22  kAxk22  (1 + ✏)kxk22.

The vectors that can be written as Ax for q sparse x lie in a union

of q dimensional linear subspaces:
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Restricted Isometry Property

Candes, Tao 2005: A random JL matrix with O(q log(n/q)/✏2)

rows satisfies (q, ✏)-RIP with high probability.

Any ideas for how you might prove this? That is, prove that a

random matrix preserves the norm of every x in this union of

subspaces?
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Restricted Isometry Property from JL

Theorem (Subspace Embedding from JL)

Let U ⇢ Rn
be a q-dimensional linear subspace in Rn

. If

⇧ 2 Rm⇥n
is chosen from any distribution D satisfying the

Distributional JL Lemma, then with probability 1� �,

(1� ✏)kvk22  k⇧vk22  (1 + ✏)kvk22

for all v 2 U , as long as m = O

⇣
q+log(1/�)

✏2

⌘
.

Quick argument:
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Application: Return to Heavy Hitters in Data Streams

Suppose you view a stream of numbers in 1, . . . , n:

4, 18, 4, 1, 2, 24, 6, 4, 3, 18, 18, . . .

After some time, you want to report which k items appeared most

frequently in the stream.

E.g. Amazon is monitoring web-logs to see which product pages

people view. They want to figure out which products are viewed

most frequently. n ⇡ 500 million.

How can you do this quickly in small space?
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Application: Heavy Hitters in Data Streams

• Every time we receive a number i in the stream, add column

Ai to b.
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Application: Heavy Hitters in Data Streams

• At the end b = Ax for an approximately sparse x if there were

only a few “heavy hitters”. Recover x from b using a sparse

recovery method (like `0 minimization).
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Application: Single Pixel Camera

Typical acquisition of image by camera:

Requires one image sensor per pixel captured.
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Application: Single Pixel Camera

Compressed acquisition of image:

p =
X

i=1

xi =
h
1
n

1
n . . . 1

n

i

2

66664

x1

x2
...

xn

3

77775

Does not provide very much information about the image.
24



Application: Single Pixel Camera

But several random linear measurements do!

p =
X

i=1

Rixi =
h
0 1 0 0 . . . 1

i

2

66664

x1

x2
...

xn

3

77775
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Application: Single Pixel Camera

Applications in:

• Imaging outside of the visible spectrum (more expensive

sensors).

• Microscopy.

• Other scientific imaging.

Compressed sensing theory does not exactly describe these

problems, but has been very valuable in modeling them.
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Discrete Fourier Matrix

The n ⇥ n discrete Fourier matrix F is defined:

Fj ,k = e
�2⇡i

n j ·k ,

where i =
p
�1. Recall e

�2⇡i
n j ·k = cos(2⇡jk/n)� i sin(2⇡jk/n).
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Discrete Fourier Matrix

Fx is the Discrete Fourier Transform of the vector x (what an FFT

computes).

Decomposes x into di↵erent frequencies: [Fx]j is the component

with frequency j/n.

Because F
⇤
F = I, F⇤

Fx = x, so we can recover x if we have access

to its DFT.
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Restricted Isometry Property

Setting A to contain a random m ⇠ O

⇣
k log2 k log n

✏2

⌘
rows of the

discrete Fourier matrix F yields a matrix that with high probability

satisfies (k , ✏)-RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candès, Tao, Rudelson,

Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

Proving this requires similar tools to analyzing subsampled

Hadamard transforms!
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Discrete Fourier Matrix

If A is a subset of q rows from F, then Ax is a subset of random

frequency components from x’s discrete Fourier transform.

In many scientific applications, we can collect entries of Fx one at

a time for some unobserved data vector x.
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Application: Geophysics

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

Think of vector x as scalar values of the density/reflectivity in a

single vertical core of the earth.

How do we measure entries of Fourier transform Fx?
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Application: Geophysics

Vibrate the earth at di↵erent frequencies! And measure the

response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from

drilling, etc. The fewer measurements we need from Fx, the

cheaper and faster our data acquisition process becomes.

32



Application: Geophysics

Warning: very cartoonish explanation of very complex problem.

Medical Imaging (MRI)

Vector x here is a 2D image. Everything works with 2D Fourier

transforms.

How do we measure entries of Fourier transform Fx?
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Application: Geophysics

Blast the body with sound waves of varying frequency.

The fewer measurements we need from Fx, the faster we can

acquire an image.

• Especially important when trying to capture something

moving (e.g. lungs, baby, child who can’t sit still).

• Can also cut down on power requirements (which for MRI

machines are huge).
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Break
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Restricted Isometry Property

Definition ((q, ✏)-Restricted Isometry Property)

A matrix A satisfies (q, ✏)-RIP if, for all x with kxk0  q,

(1� ✏)kxk22  kAxk22  (1 + ✏)kxk22.

Lots of other random matrices satisfy RIP as well.

One major theoretical question is if we can deterministically

construct good RIP matrices. Interestingly, if we want

(O(k),O(1)) RIP, we can only do so with O(k2) rows (now very

slightly better – thanks to Bourgain et al.).

Whether or not a linear dependence on k is possible with a

deterministic construction is unknown.

35



Faster Sparse Recovery

Theorem (`0-minimization)

Suppose we are given A 2 Rm⇥n
and b = Ax for an unknown

k-sparse x. If A is (2k , ✏)-RIP for any ✏ < 1 then x is the unique

minimizer of:

minkzk0 subject to Az = b.

Algorithm question: Can we recover x using a faster method?

Ideally in polynomial time.
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Basis Pursuit

Convex relaxation of the `0 minimization problem:

Problem (Basis Pursuit, i.e., `1 minimization.)

min
z
kzk1 subject to Az = b.

• Objective is convex.

• Optimizing over convex set.

What is one method for solving this problem?
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Basis Pursuit Linear Program

Equivalent formulation:

Problem (Basis Pursuit Linear Program.)

min
w,z

1
T
w subject to Az = b,w � 0,�w  z  w.

Can be solved using any algorithm for linear programming. An

Interior Point Method will run in ⇠ O(n3.5) time.
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Basis Pursuit Intuition

Suppose A is 2⇥ 1, so b is just a scalar and x is a 2-dimensional

vector.

Vertices of level sets of `1 norm

correspond to sparse solutions.

This is not the case e.g. for the `2
norm.
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Basis Pursuit Analysis

Theorem

If A is (3k , ✏)-RIP for ✏ < .17 and kxk0 = k , then x is the unique

optimal solution of the Basis Pursuit LP).

Similar proof to `0 minimization:

• By way of contradiction, assume x is not the optimal solution.
Then there exists some non-zero � such that:

• kx+�k1  kxk1
• A(x+�) = Ax. That is, A� = 0.

Di↵erence is that we can no longer assume that � is sparse.

We will argue that � is approximately sparse.
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Tools Needed

First tool:

For any q-sparse vector w, kwk2  kwk1 
p
qkwk2
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Tools Needed

Second tool:

For any norm and vectors a,b, ka+ bk � kak � kbk
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Basis Pursuit Analysis

Some definitions:

T1 contains the 2k indices with largest value in � that are zero in

x. T2 contains the next 2k largest entries, etc.
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Basis Pursuit Analysis

Claim 1: k�Sk1 � k�S̄k1
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Basis Pursuit Analysis

Claim 2: k�Sk2 �
p
2
P

j�2 k�Tjk2:

k�Sk2 �
1p
k
k�Sk1 �

1p
k
k�S̄k1 =

1p
k

X

j�1

k�Tjk1.

Intermediate Claim: k�Tjk1 �
p
2kk�Tj+1k2
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Basis Pursuit Analysis

Finish up proof by contradiction: Recall that A is assumed to

have the (3k , ✏) RIP property.

0 = kA�k2 � kA�S[T1k2 �
X

j�2

kA�Tjk2
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Faster Methods

A lot of interest in developing even faster algorithms that avoid

using the “heavy hammer” of linear programming and run in even

faster than O(n3.5) time.

• Iterative Hard Thresholding: Looks a lot like projected

gradient descent. Solve minz kAz� bk with gradient descent

while continually projecting z back to the set of k-sparse

vectors. Runs in time ⇠ O(nk log n) for Gaussian

measurement matrices and O(n log n) for subsampled Fourer

matrices.

• Other “first order” type methods: Orthogonal Matching

Pursuit, CoSaMP, Subspace Pursuit, etc.
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Faster Methods

When A is a subsampled Fourier matrix and we have access to Ax,

there are now methods for computing a k-sparse approximation to

x that run in O(k logc n) time [Hassanieh, Indyk, Kapralov,

Katabi, Price, Shi, etc. 2012+].

Hold up...
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Sparse Fourier Transform

Corollary: When x is k-sparse, we can compute the inverse Fourier

transform F
⇤
Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.

• Feed that input into our sparse recovery algorithm to extract

x.

Fourier and inverse Fourier transforms in sublinear time when the

output is sparse.

Applications in: Wireless communications, GPS, protein imaging,

radio astronomy, etc. etc. 49


