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Review of Last Class
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Main idea: If you want to compute singular vectors or eigenvectors,

multiply two matrices, solve a regression problem, then

1. Compress matrices using randomized method

2. Solve the problem on the smaller or sparser matrix



Beyond the Hadamard Transform

The Hadamard Transform is closely related to the Discrete Fourier

Transform. gl
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Fy computes the Discrete Fourier Transform of the vector y. Can
be computed in O(nlog n) time using a divide and conquer
algorithm (the Fast Fourier Transform).



The Uncertainty Principal

The Uncertainty Principal (informal): A function and it's
Fourier transform cannot both be concentrated.
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The Uncertainty Principal

Sampling does not preserve norms, i.e., ||Sy||2 # ||y||> when y has

a few large entries.

Taking a Fourier transform exactly eliminates this hard case,

without changing y's norm.

One of the central tools in the field of sparse recovery aka
compressed sensing.



Sparse Recovery/Compressed Sensing Problem Setup

Underdetermined linear regression: Given A € R™*" with
m < n, beR™ Assume b = Ax for some x € R".
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e Infinite possible solutions y to Ay = b, so in general, it is

impossible to recover parameter vector x from the data A, b.



Sparsity Recovery/Compressed Sensing

Underdetermined linear regression: Given A € R™*" with
m < n, b e€R™ Solve Ax = b for x.
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e In many cases can recover x with << n rows. In fact, often
~ O(k) suffice.
e Need additional assumptions about Al



Motivation

e In statistics and machine learning, we often think about A's

rows as data drawn from some universe/distribution:

bedrooms| bathrooms| sq.ft.|floors
home 1 2 2 1800 | 2
home 2 4 2.5 2700 1
——
l_’_/——d )
—
home n 5 35 (3600 3

e In other settings, we will get to choose A’s rows. That is,
each b, = x"a; for some vector a; that we select.

e |n the later case, we often call b; a linear measurement of x

and we call A a measurement matrix.



Assumptions on Measurement Matrix

)| Ay~ bll, = +E) NAF-H,

When should this problem be difficult?
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Assumptions on Measurement Matrix

Many ways to formalize our intuition

e A has Kruskal rank r. All sets of r columns in A are linearly
independent.

e Recover vectors x with sparsity kK = r/2.
o Ais pi-incoherent. |ATA;| < pl|Aj]l2]|Ajll2 for all columns
A A, i#]j.

e Recover vectors x with sparsity k = 1/p.

e Focus today: A obeys the Restricted Isometry Property.
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Restricted Isometry Property
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Definition ((g, ¢)-Restricted Isometry Property)
A matrix A satisfies (q, €)-RIP if, for all x with ((x]|o)< g,

(1= o)llxllz < A2 < (1 + e)llx]l3-

e Johnson-Lindenstrauss type condition.

e A preserves the norm of all g sparse vectors, instead of the
norms of a fixed discrete set of vectors, or all vectors in a

subspace (as in subspace embeddings).
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First Sparse Recovery Result

Theorem (/p-minimization)
Suppose we are given A € R™*" and b = Ax for an unknown

k-sparse x € R". If A is (2k,€)-RIP for any e < 1 then x is the

unique minimizer of:

min||z||o subject to Az = b.
2

e Establishes that information theoretically we can recover x.

Solving the £y-minimization problem is computationally
difficult, requiring O(n*) time. We will address faster recovery

shortly.
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First Sparse Recovery Result

Claim: If A is (2k,€)-RIP for any € < 1 then x is the unique
minimizer of mina,—p ||Z||o-

Proof: By contradiction, assume there is some y # x such that
Ay =b, [lyllo < [Ixllo. = K

/43317 Ax=b
Ag—A*“b la—-O‘ZA -x) \A#ﬁ
= nA(;,-x)H 2 (1-6) Iy~ Oy > 0
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Important note: Robust versions of this theorem and the others

we will discuss exist. These are much more important practically.
Here's a flavor of a robust result:

e Suppose b = A(x + e) where x is k-sparse and e is dense but
has bounded norm.

e Recover some k-sparse X such that:

1% = x][2 < [le]lx

- 1
= xl2 < 0 () llel

or even
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We will not discuss robustness in detail, but along with
computational considerations, it is a big part of what has made
compressed sensing such an active research area in the last 20

years. Non-robust compressed sensing results have been known for
a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur les
lois de la dilatabilite de fluides elastique et sur celles de la force

expansive de la vapeur de I'alcool, a differentes temperatures.
Journal de I'Ecole Polytechnique, 24-76. 1795.
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Restricted Isometry Property

What matrices satisfy this property?

e Random Johnson-Lindenstrauss matrices (Gaussian, sign, etc.)
with m = O(M) rows are (k, €)-RIP.

Some real world data may look random, but this is also a useful
observation algorithmically when we want to design A.
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Restricted Isometry Property

Definition ((g, ¢)-Restricted Isometry Property — Candes,
Tao '05)
A matrix A satisfies (q, €)-RIP if, for all x with ||x|[o < g,

(1= e)llx]13 < |Ax[I3 < (1 + €)lIx]|3:

The vectors that can be written as Ax for g sparse x lie in a union

of g dimensional linear subspaces:

A

> [
<[] 1

X
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Restricted Isometry Property

Candes, Tao 2005: A random JL matrix with O(qlog(n/q)/€?)
rows satisfies (g, €)-RIP with high probability.

Any ideas for how you might prove this? That is, prove that a
random matrix preserves the norm of every x in this union of

subspaces?
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Restricted Isometry Property from JL

Theorem (Subspace Embedding from JL)
Let U C R" be a g-dimensional linear subspace in R". If

M € R™*" js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — ¢,

(L= e)llvlz < INv]l3 < (1 +€)llv]i3

€2

for allv € U, as long as m = O(M>.

Quick argument: . N
! - Jogy (N/§
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Application: Return to Heavy Hitters in Data Streams

Suppose you view a stream of numbersin 1,...,n:
4,18,4,1,2,24,6,4,3,18,18, ...

After some time, you want to report which k items appeared most
frequently in the stream.

E.g. Amazon is monitoring web-logs to see which product pages
people view. They want to figure out which products are viewed
most frequently. n =~ 500 million.

How can you do this quickly in small space?
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Application: Heavy Hitters in Data Streams
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e Every time we receive a number / in the stream, add column
A; to b.
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Application: Heavy Hitters in Data Streams
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e At the end b = Ax for an approximately sparse x if there were
only a few “heavy hitters”. Recover x from b using a sparse
recovery method (like £o minimization).
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Application: Single Pixel Camera

Typical acquisition of image by camera:

light sensors

==
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Requires one image sensor per pixel captured.
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Application: Single Pixel Camera

Compressed acquisition of image:

single light sensor

X1
X2

N, [t 1
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Does not provide very much information about the image.
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Application: Single Pixel Camera

But several random linear measurements do!

single light sensor
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Application: Single Pixel Camera

Applications in:

e Imaging outside of the visible spectrum (more expensive

Sensors).
e Microscopy.

e Other scientific imaging.

Compressed sensing theory does not exactly describe these
problems, but has been very valuable in modeling them.
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Discrete Fourier Matrix

The n x n discrete Fourier matrix F is defined:
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where i = v/—1. Recall e n J'k = cos(2mjk/n) — isin(2mjk/n).
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Discrete Fourier Matrix

Fx is the Discrete Fourier Transform of the vector x (what an FFT
computes).

Decomposes x into different frequencies: [Fx]; is the component
with frequency j/n.

Because F*F = I, F*Fx = x, so we can recover x if we have access
to its DFT.
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Restricted Isometry Property

= A

Jé = [ )

. . 2
Setting A to contain a random m ~ O (klog eé( Iog") rows of the

discrete Fourier matrix F yields a matrix that with high probability
satisfies (k, €)-RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candes,( Tao,/Rudelson,
Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

Proving this requires similar tools to analyzing subsampled
Hadamard transforms!
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If A is a subset of g rows from F, then Ax is a subset of random

frequency components from x's discrete Fourier transform.

In many scientific applications, we can collect entries of Fx one at

a time for some unobserved data vector x.
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Application: Geophysics

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

Think of vector x as scalar values of the density/reflectivity in a
single vertical core of the earth.

How do we measure entries of Fourier transform Fx?

31



Application: Geophysics

Vibrate the earth at different frequencies! And measure the
response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from
drilling, etc. The fewer measurements we need from Fx, the
cheaper and faster our data acquisition process becomes.
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Application: CGcophivsic

Madice T o) mg

Medical Imaging (MRI)

Vector x here is a 2D image. Everything works with 2D Fourier

transforms.

How do we measure entries of Fourier transform Fx?
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Application: Geophysics

Blast the body with sound waves of varying frequency.

The fewer measurements we need from Fx, the faster we can

acquire an image.

e Especially important when trying to capture something
moving (e.g. lungs, baby, child who can't sit still).

e Can also cut down on power requirements (which for MRI

machines are huge).
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Restricted Isometry Property

Definition ((g, ¢)-Restricted Isometry Property)
A matrix A satisfies (g, €)-RIP if, for all x with ||x||p < g,

(1—o)lIxl2 < A7 < (1 + €)llx]l3-

Lots of other random matrices satisfy RIP as well.

One major theoretical question is if we can deterministically

construct good RIP matrices. Interestingly, if we want
(O(k), O(1)) RIP, we can only do so with O(k?) rows (now very
slightly better — thanks to Bourgain et al.).

Whether or not a linear dependence on k is possible with a

deterministic construction is unknown.
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Faster Sparse Recovery

Theorem (/p-minimization)

Suppose we are given A € R™*" and b = Ax for an unknown

k-sparse x. If A is (2k, €)-RIP for any e < 1 then x is the unique
minimizer of:

min||z||o subject to Az = b.

Algorithm question: Can we recover x using a faster method?

|deally in polynomial time.
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Convex relaxation of the /y minimization problem:

Problem (Basis Pursuit, i.e., /; minimization.)

oL\

min||z||1 subject to Az = b.
z

e Objective is convex. o | imaaf

e Optimizing over convex set.
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Basis Pursuit Linear Program

Equivalent formulation:

Problem (Basis Pursuit Linear Program.)

minl’w subject to Az=b,w>0 —w<z<w.
w,z

Can be solved using any algorithm for linear programming. An
Interior Point Method will run in ~ O(n3®) time.
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Basis Pursuit Intuition

Suppose Ais 2 X 1, so b is just a scalar and x is a 2-dimensional

vector.

Iz1,=1
I1z1,=2
Iz1,=4

v
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Vertices of level sets of ¢1 norm
correspond to sparse solutions.

1z1,=1
Iz1,=2

Iz1,

v

z,=0

This is not the case e.g. for the />

norm.
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Basis Pursuit Analysis

Theorem

If A is (3k,€)-RIP for e < .17 and ||x||o = k, then x is the unique
optimal solution of the Basis Pursuit LPg

Similar proof to £y minimization:

e By way of contradiction, assume x is not the optimal solution.
Then there exists some non-zero A such that:
o [Ix+ Ally < lx|}1
e A(x+ A) = Ax. Thatis, AA =0.

Difference is that we can no longer assume that A is sparse.
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Tools Needed

First tool:

For any g-sparse vector w, [wll2 < |lwll1 < /q|lw]2

M) = (M)

I = Z il
Felzw 2, 2w\ R X Z.\wd) Nl
lwl\l ﬁ t*.)

Fi o w0
W= sign(w)‘ Z«f f w, <O
o <lse

T £ luwily Il
wTw = V] £ Hwl] - Il wily = {4 llwll,
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Tools Needed

Second tool: \\Rweme h@\gk M%w\ﬂy‘z

For any norm and vectors a, b, |a -+ b|| > ||a]| — ||b]|

bl = o) + 1B
—llat bl = -)jeli = bl
N = latb~bll = lla+bl| +11b/]

(la]|- 114l =1+ bl]
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Basis Pursuit Analysis

Some definitions:

2k

i
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Basis Pursuit Analysis

Claim 1: ||As|l1 > || Az

[ x+ L, = X1,

[ x + L,

A,

u)
v
= 2 |x A + 2 Ix+Al
teS v ¢S
Ux+ De|l, + | agll,
> “)(ﬂ'_. ||D5|\| + )| ll},\l‘

<

-
—
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Basis Pursuit Analysis

Claim 2: [|As2 > V235, |AT|2:
lwll, = & Hwll

/1 I 1
|8s]2 2 —Z=l|Asll =2 —=l1Asfl = —=>_llag].
f =
!
I Z '%n DT‘MII&
Intermediate Claim: ||Ar|; > \/_HATHH\GZ ’
4 =min L 1671, > 2K
U = mar AT'H
G Jlag ) = ETZ 8
L Gk [T = GR{ZEW =204
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Basis Pursuit Analysis

Finish up proof by contradiction: Recall that A is assumed to
have the (3k,€) RIP property.
Ax=b AGFD)=h

0=[|AA|2 > |AAsuT 2 — > |AAT |2

- j>2
= (1-¢) [ Bgyr Il —(Ite) Z AT,
> _ Jé?_
(1 AN, = (0 gy 1830,
YA

— _ ’/|_,6.
I8l J1-6 -f £ 5 0
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Faster Methods

A lot of interest in developing even faster algorithms that avoid

using the “heavy hammer” of linear programming and run in even
faster than O(n3®) time.

e lterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve min, ||Az — b|| with gradient descent
while continually projecting z back to the set of k-sparse
vectors. Runs in time ~ O(nk log n) for Gaussian

measurement matrices and O(nlog n) for subsampled Fourer
matrices.

e Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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Faster Methods

==hI:

When A is a subsampled Fourier matrix and we have access to Ax,
there are now methods for computing a k-sparse approximation to
x that run in O(klog® n) time [Hassanieh, Indyk, Kapralov,
Katabi, Price, Shi, etc. 2012+].

Hold up...
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Sparse Fourier Transform

Corollary: When x is k-sparse, we can compute the inverse Fourier
transform F*Fx of Fx in O(k log® n) time!

e Randomly subsample Fx.
e Feed that input into our sparse recovery algorithm to extract

X.

Fourier and inverse Fourier transforms in sublinear time when the

output Is sparse.
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Applications in: Wireless communications, GPS, protein imaging,
radio astronomy, etc. etc. 49



