CS-GY 6763: Lecture 11 Sparse Recovery and Compressed Sensing

R. Teal Witter

April 18, 2022

NYU Tandon School of Engineering

Review of Last Class

Main idea: If you want to compute singular vectors or eigenvectors, multiply two matrices, solve a regression problem, then

- 1. Compress matrices using randomized method
- 2. Solve the problem on the smaller or sparser matrix

Beyond the Hadamard Transform

The <u>Hadamard Transform</u> is closely related to the <u>Discrete Fourier</u> Transform.

$$\mathbf{F}_{j,k} = \underbrace{e^{-2\pi i \frac{j \cdot k}{n}}},$$

$$F^*F = I$$
.

Real part of $\mathbf{F}_{j,k}$.

Fy computes the Discrete Fourier Transform of the vector \mathbf{y} . Can be computed in $O(n \log n)$ time using a divide and conquer algorithm (the Fast Fourier Transform).

The Uncertainty Principal

The Uncertainty Principal (informal): A function and it's Fourier transform cannot both be concentrated.

The Uncertainty Principal

Sampling does not preserve norms, i.e., $\|\mathbf{S}\mathbf{y}\|_2 \not\approx \|\mathbf{y}\|_2$ when \mathbf{y} has a few large entries.

Taking a Fourier transform exactly eliminates this hard case, without changing **y**'s norm.

One of the central tools in the field of sparse recovery aka compressed sensing.

Sparse Recovery/Compressed Sensing Problem Setup

Underdetermined linear regression: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $\underline{m < n}$, $\mathbf{b} \in \mathbb{R}^m$. Assume $\mathbf{b} = \mathbf{A}\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$.

• Infinite possible solutions y to Ay = b, so in general, it is impossible to recover parameter vector x from the data A, b.

Sparsity Recovery/Compressed Sensing

Underdetermined linear regression: Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m < n, $\mathbf{b} \in \mathbb{R}^m$. Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ for \mathbf{x} .

• Assume **x** is *k*-sparse for small *k*. $\|\mathbf{x}\|_0 = k$.

- In many cases can recover \mathbf{x} with $\ll n$ rows. In fact, often $\sim O(k)$ suffice.
- Need additional assumptions about A!

Motivation

• In statistics and machine learning, we often think about **A**'s rows as data drawn from some universe/distribution:

- In other settings, we will get to choose **A**'s rows. That is, each $b_i = \mathbf{x}^T \mathbf{a}_i$ for some vector \mathbf{a}_i that we select.
- In the later case, we often call b_i a <u>linear measurement</u> of \mathbf{x} and we call \mathbf{A} a measurement matrix.

Assumptions on Measurement Matrix

When should this problem be difficult?

Assumptions on Measurement Matrix

Many ways to formalize our intuition

- A has Kruskal rank r. All sets of r columns in A are linearly independent.
 - Recover vectors **x** with sparsity k = r/2.
- A is μ -incoherent. $|\mathbf{A}_i^T \mathbf{A}_j| \le \mu \|\mathbf{A}_i\|_2 \|\mathbf{A}_j\|_2$ for all columns $\mathbf{A}_i, \mathbf{A}_j, i \ne j$.
 - Recover vectors **x** with sparsity $k = 1/\mu$.
- Focus today: A obeys the Restricted Isometry Property.

Definition $((q, \epsilon)$ -Restricted Isometry Property)

A matrix **A** satisfies (q, ϵ) -RIP if, for all **x** with $(x|_0) \le q$,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2.$$

- Johnson-Lindenstrauss type condition.
- A preserves the norm of all q sparse vectors, instead of the norms of a fixed discrete set of vectors, or all vectors in a subspace (as in subspace embeddings).

First Sparse Recovery Result

Theorem (ℓ_0 -minimization)

Suppose we are given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} = \mathbf{A}\mathbf{x}$ for an unknown k-sparse $\mathbf{x} \in \mathbb{R}^n$. If \mathbf{A} is $(2k, \epsilon)$ -RIP for any $\epsilon < 1$ then \mathbf{x} is the unique minimizer of:

$$\min \|\mathbf{z}\|_0$$
 subject to $\mathbf{A}\mathbf{z} = \mathbf{b}$.

• Establishes that information theoretically we can recover \mathbf{x} . Solving the ℓ_0 -minimization problem is computationally difficult, requiring $O(n^k)$ time. We will address faster recovery shortly.

First Sparse Recovery Result

Claim: If **A** is $(2k, \epsilon)$ -RIP for any $\epsilon < 1$ then **x** is the <u>unique</u> minimizer of $\min_{\mathbf{Az=b}} \|\mathbf{z}\|_0$.

Proof: By contradiction, assume there is some $\mathbf{y} \neq \mathbf{x}$ such that $\mathbf{A}\mathbf{y} = \mathbf{b}, \ \|\mathbf{y}\|_0 \leq \|\mathbf{x}\|_0. = \mathbf{K}$

$$Ay = b$$
 $Ax = b$
 $Ay - Ax = b - b = 0 = A(y - x)$
 $0 = ||A(y - x)||_{2}^{2} \ge (1 - 6) ||(y - x)||_{2}^{2} > 0$

Robustness

Important note: Robust versions of this theorem and the others we will discuss exist. These are much more important practically. Here's a flavor of a robust result:

- Suppose $\mathbf{b} = \mathbf{A}(\mathbf{x} + \mathbf{e})$ where \mathbf{x} is k-sparse and \mathbf{e} is dense but has bounded norm.
- Recover some k-sparse $\tilde{\mathbf{x}}$ such that:

$$\|\mathbf{\tilde{x}} - \mathbf{x}\|_2 \le \|\mathbf{e}\|_1$$

or even

$$\|\tilde{\mathbf{x}} - \mathbf{x}\|_2 \le O\left(\frac{1}{\sqrt{k}}\right) \|\mathbf{e}\|_1.$$

Robustness

We will not discuss robustness in detail, but along with computational considerations, it is a big part of what has made compressed sensing such an active research area in the last 20 years. Non-robust compressed sensing results have been known for a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur les lois de la dilatabilite de fluides elastique et sur celles de la force expansive de la vapeur de l'alcool, a differentes temperatures.

Journal de l'Ecole Polytechnique, 24–76. 1795.

What matrices satisfy this property?

• Random Johnson-Lindenstrauss matrices (Gaussian, sign, etc.) with $m = O(\frac{k \log(n/k)}{\epsilon^2})$ rows are (k, ϵ) -RIP.

Some real world data may look random, but this is also a useful observation algorithmically when we want to design \mathbf{A} .

Definition ((q, ϵ) -Restricted Isometry Property – Candes, Tao '05)

A matrix **A** satisfies (q, ϵ) -RIP if, for all **x** with $||\mathbf{x}||_0 \leq q$,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2.$$

The vectors that can be written as $\mathbf{A}\mathbf{x}$ for q sparse \mathbf{x} lie in a <u>union</u> of q dimensional linear subspaces:

Candes, Tao 2005: A random JL matrix with $O(q \log(n/q)/\epsilon^2)$ rows satisfies (q, ϵ) -RIP with high probability.

Any ideas for how you might prove this? That is, prove that a random matrix preserves the norm of every **x** in this union of subspaces?

Restricted Isometry Property from JL

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a q-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{q + \log(1/\delta)}{\epsilon^2}\right)$.

Quick argument:

$$\binom{n}{q} \leq n^{\frac{q}{2}} \qquad \binom{n}{2} \leq \frac{s}{n^{\frac{q}{2}}} \qquad \binom{\log(n/s)}{\epsilon^{2}} = o(q\log(n/s))$$

Application: Return to Heavy Hitters in Data Streams

Suppose you view a stream of numbers in $1, \ldots, n$:

$$4, 18, 4, 1, 2, 24, 6, 4, 3, 18, 18, \dots$$

After some time, you want to report which k items appeared most frequently in the stream.

E.g. Amazon is monitoring web-logs to see which product pages people view. They want to figure out which products are viewed most frequently. $n \approx 500$ million.

How can you do this quickly in small space?

Application: Heavy Hitters in Data Streams

Every time we receive a number i in the stream, add column
 A_i to b.

Application: Heavy Hitters in Data Streams

• At the end $\mathbf{b} = \mathbf{A}\mathbf{x}$ for an approximately sparse \mathbf{x} if there were only a few "heavy hitters". Recover \mathbf{x} from \mathbf{b} using a sparse recovery method (like ℓ_0 minimization).

Typical acquisition of image by camera:

Requires one image sensor per pixel captured.

Compressed acquisition of image:

$$p = \sum_{i=1}^{n} x_i = \begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Does not provide very much information about the image.

But several random linear measurements do!

Applications in:

- Imaging outside of the visible spectrum (more expensive sensors).
- Microscopy.
- Other scientific imaging.

Compressed sensing theory does not exactly describe these problems, but has been very valuable in modeling them.

Discrete Fourier Matrix

The $n \times n$ discrete Fourier matrix **F** is defined:

$$F_{j,k}=e^{\frac{-2\pi i}{n}j\cdot k},$$

where $i = \sqrt{-1}$. Recall $e^{\frac{-2\pi i}{n}j \cdot k} = \cos(2\pi jk/n) - i\sin(2\pi jk/n)$.

Discrete Fourier Matrix

Fx is the Discrete Fourier Transform of the vector **x** (what an FFT computes).

Decomposes **x** into different frequencies: $[\mathbf{Fx}]_j$ is the component with frequency j/n.

Because $\mathbf{F}^*\mathbf{F} = \mathbf{I}$, $\mathbf{F}^*\mathbf{F}\mathbf{x} = \mathbf{x}$, so we can recover \mathbf{x} if we have access to its DFT.

Setting **A** to contain a random $m \sim O\left(\frac{k \log^2 k \log n}{\epsilon^2}\right)$ rows of the discrete Fourier matrix **F** yields a matrix that with high probability satisfies (k, ϵ) -RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candès, Tao, Rudelson, Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

Proving this requires similar tools to analyzing subsampled Hadamard transforms!

Discrete Fourier Matrix

If A is a subset of q rows from F, then Ax is a subset of random frequency components from x's discrete Fourier transform.

In many scientific applications, we can collect entries of $\mathbf{F}\mathbf{x}$ one at a time for some unobserved data vector \mathbf{x} .

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

Think of vector **x** as scalar values of the density/reflectivity in a single vertical core of the earth.

How do we measure entries of Fourier transform **Fx**?

Vibrate the earth at different frequencies! And measure the response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from drilling, etc. The fewer measurements we need from **Fx**, the cheaper and faster our data acquisition process becomes.

Medical I maging

Warning: very cartoonish explanation of very complex problem.

Medical Imaging (MRI)

Vector **x** here is a 2D image. Everything works with 2D Fourier transforms.

How do we measure entries of Fourier transform **Fx**?

Blast the body with sound waves of varying frequency.

The fewer measurements we need from **Fx**, the faster we can acquire an image.

- Especially important when trying to capture something moving (e.g. lungs, baby, child who can't sit still).
- Can also cut down on power requirements (which for MRI machines are huge).

Definition $((q, \epsilon)$ -Restricted Isometry Property)

A matrix **A** satisfies (q, ϵ) -RIP if, for all **x** with $||\mathbf{x}||_0 \leq q$,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2.$$

Lots of other random matrices satisfy RIP as well.

One major theoretical question is if we can <u>deterministically</u> <u>construct</u> good RIP matrices. Interestingly, if we want (O(k), O(1)) RIP, we can only do so with $O(k^2)$ rows (now very slightly better – thanks to Bourgain et al.).

Whether or not a linear dependence on k is possible with a deterministic construction is unknown.

Faster Sparse Recovery

Theorem (ℓ_0 -minimization)

Suppose we are given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} = \mathbf{A}\mathbf{x}$ for an unknown k-sparse \mathbf{x} . If \mathbf{A} is $(2k, \epsilon)$ -RIP for any $\epsilon < 1$ then \mathbf{x} is the unique minimizer of:

$$\min \|\mathbf{z}\|_0$$

subject to

Az = b.

Algorithm question: Can we recover **x** using a faster method? Ideally in polynomial time.

Basis Pursuit

Convex relaxation of the ℓ_0 minimization problem:

• Objective is convex.

· Linear

Optimizing over convex set.

What is one method for solving this problem?

Basis Pursuit Linear Program

Equivalent formulation:

Problem (Basis Pursuit Linear Program.)

$$\min_{\mathbf{w}, \mathbf{z}} \mathbf{1}^T \mathbf{w}$$
 subject to $\mathbf{Az} = \mathbf{b}, \mathbf{w} \ge 0, -\mathbf{w} \le \mathbf{z} \le \mathbf{w}.$

Can be solved using any algorithm for linear programming. An Interior Point Method will run in $\sim O(n^{3.5})$ time.

Basis Pursuit Intuition

Suppose **A** is 2×1 , so **b** is just a scalar and **x** is a 2-dimensional vector.

Vertices of level sets of ℓ_1 norm correspond to sparse solutions.

This is not the case e.g. for the ℓ_2 norm.

Theorem

If **A** is $(3k, \epsilon)$ -RIP for $\epsilon < .17$ and $\|\mathbf{x}\|_0 = k$, then **x** is the unique optimal solution of the Basis Pursuit LP**3**.

Similar proof to ℓ_0 minimization:

- By way of contradiction, assume x is not the optimal solution. Then there exists some non-zero Δ such that:
 - $\bullet \|\mathbf{x} + \Delta\|_1 \le \|\mathbf{x}\|_1$
 - $\mathbf{A}(\mathbf{x} + \Delta) = \mathbf{A}\mathbf{x}$. That is, $\mathbf{A}\Delta = 0$.

Difference is that we can no longer assume that Δ is sparse.

We will argue that Δ is approximately sparse.

Tools Needed

First tool:

For any q-sparse vector
$$\mathbf{w}$$
, $\|\mathbf{w}\|_{2} \leq \|\mathbf{w}\|_{1} \leq \sqrt{q} \|\mathbf{w}\|_{2}$

$$\|\mathbf{M}\|_{F} \leq tr(\mathbf{M})$$

$$\sqrt{\sum_{i} \lambda_{i}^{2}} \leq \sum_{i} |\lambda_{i}|$$

$$\|\mathbf{w}\|_{2} = \sqrt{\sum_{i} \omega_{i}^{2}} \leq \sum_{i} |\lambda_{i}|$$

$$\|\mathbf{w}\|_{2} = \sqrt{\sum_{i} \omega_{i}^{2}} \leq \sum_{i} |\lambda_{i}|$$

$$\|\mathbf{w}\|_{2} = \sqrt{\sum_{i} \omega_{i}^{2}} \leq \sum_{i} |\lambda_{i}|$$

$$\|\mathbf{w}\|_{2} = \sqrt{\sum_{i} |\lambda_{i}|} \leq |\lambda_{i}|$$

$$\|\mathbf{w}\|_{2} = |\lambda_{i}| \leq |\lambda_{i}|$$

$$\|\mathbf{w}\|_{2} = |\lambda_{i}|$$

$$\|\mathbf{w}\|$$

Tools Needed

Second tool: Reverse triangle inequality:

For any norm and vectors
$$\mathbf{a}$$
, \mathbf{b} , $\|\mathbf{a} + \mathbf{b}\| \ge \|\mathbf{a}\| - \|\mathbf{b}\|$
 $\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a}\| + \|\mathbf{b}\|$
 $\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a}\| + \|\mathbf{b}\|$
 $\|\mathbf{a}\| = \|\mathbf{a} + \mathbf{b} - \mathbf{b}\| = \|\mathbf{a} + \mathbf{b}\| + \|\mathbf{b}\|$
 $\|\mathbf{a}\| = \|\mathbf{a} + \mathbf{b} - \mathbf{b}\| = \|\mathbf{a} + \mathbf{b}\| + \|\mathbf{b}\|$
 $\|\mathbf{a}\| = \|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a} + \mathbf{b}\|$

Some definitions:

Claim 1:
$$\|\Delta_{S}\|_{1} \geq \|\Delta_{\bar{S}}\|_{1}$$

$$\|(x + \Delta)\|_{1} \leq \|(x)\|_{1}$$

$$\|(x + \Delta)\|_{1} = \sum_{i \in S} |x_{i} + \Delta_{i}| + \sum_{i \notin S} |x_{i} + \Delta_{i}|$$

$$= \|(x + \Delta_{S})\|_{1} + \|(\Delta_{\bar{S}})\|_{1}$$

$$\|(x + \Delta_{S})\|_{1} + \|(\Delta_{\bar{S}})\|_{1}$$

$$\|(x + \Delta_{S})\|_{1} + \|(\Delta_{\bar{S}})\|_{1}$$

$$\|(x + \Delta_{S})\|_{1} + \|(\Delta_{\bar{S}})\|_{1}$$

Claim 2:
$$\|\Delta_{S}\|_{2} \geq \sqrt{2} \sum_{j \geq 2} \|\Delta_{T_{j}}\|_{2}$$
:
$$\|\omega\|_{1} \leq \sqrt{k} \|\omega\|_{2}$$

$$\|\Delta_{S}\|_{2} \geq \frac{1}{\sqrt{k}} \|\Delta_{S}\|_{1} \geq \frac{1}{\sqrt{k}} \|\Delta_{\bar{S}}\|_{1} = \frac{1}{\sqrt{k}} \sum_{j \geq 1} \|\Delta_{T_{j}}\|_{1}.$$
Intermediate Claim: $\|\Delta_{T_{j}}\|_{1} \geq \sqrt{2k} \|\Delta_{T_{j+1}}\|_{2}$

$$\mathcal{L} = \min \Delta_{T_{j}} \qquad \qquad ||\Delta_{T_{j}}||_{1} \geq 2k \cdot \mathcal{L}$$

$$\mathcal{L} = \max \Delta_{T_{j+1}} \qquad \qquad ||\Delta_{T_{j+1}}||_{2} = \sqrt{2k} \int_{i \in T_{j+1}}^{2k} \Delta_{i}^{2}$$

$$\mathcal{L} = \max \Delta_{T_{j+1}} \qquad \qquad ||\Delta_{T_{j+1}}||_{2} = \sqrt{2k} \int_{i \in T_{j+1}}^{2k} \Delta_{i}^{2}$$

$$\mathcal{L} = \sum_{i \in T_{j+1}}^{2k} ||\Delta_{T_{i}}||_{1}$$

$$\mathcal{L} = \sum_{i \in T_{j+1}}^{2k} ||\Delta_{T_{i}}||_{1}$$

Finish up proof by contradiction: Recall that **A** is assumed to have the $(3k, \epsilon)$ RIP property.

$$A_{x=b} \quad A_{(x+\Delta)=b}$$

$$0 = \|A\Delta\|_{2} \ge \|A\Delta_{S\cup T_{1}}\|_{2} - \sum_{j\ge 2} \|A\Delta_{T_{j}}\|_{2}$$

$$\ge (1-\epsilon) \|\Delta_{S\cup T_{1}}\|_{2} - (1+\epsilon) \mathbb{Z} \|\Delta_{T_{j}}\|_{2}$$

$$\ge (1-\epsilon) \|\Delta_{S\cup T_{1}}\|_{2} - (1+\epsilon) \mathbb{Z} \|\Delta_{S\cup T_{j}}\|_{2}$$

$$\ge (1-\epsilon) \|\Delta_{S}\|_{2} - (1+\epsilon) \mathbb{Z} \|\Delta_{S\cup T_{j}}\|_{2}$$

$$= \|\Delta_{S}\|_{2} \int_{1-\epsilon} |-\epsilon|_{1-\epsilon} - \frac{\epsilon}{\sqrt{2}} \int_{2}^{\omega_{ant}} ds$$

Faster Methods

A lot of interest in developing even faster algorithms that avoid using the "heavy hammer" of linear programming and run in even faster than $O(n^{3.5})$ time.

- Iterative Hard Thresholding: Looks a lot like projected gradient descent. Solve $\min_{\mathbf{z}} \|\mathbf{A}\mathbf{z} \mathbf{b}\|$ with gradient descent while continually projecting \mathbf{z} back to the set of k-sparse vectors. Runs in time $\sim O(nk\log n)$ for Gaussian measurement matrices and $O(n\log n)$ for subsampled Fourer matrices.
- Other "first order" type methods: Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, etc.

Faster Methods

When **A** is a subsampled Fourier matrix and we have access to **Ax**, there are now methods for computing a k-sparse approximation to x that run in $O(k \log^c n)$ time [Hassanieh, Indyk, Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...

Sparse Fourier Transform

Corollary: When **x** is k-sparse, we can compute the inverse Fourier transform $\mathbf{F}^*\mathbf{F}\mathbf{x}$ of $\mathbf{F}\mathbf{x}$ in $O(k\log^c n)$ time!

- Randomly subsample Fx.
- Feed that input into our sparse recovery algorithm to extract
 x.

Fourier and inverse Fourier transforms in <u>sublinear time</u> when the output is sparse.

Applications in: Wireless communications, GPS, protein imaging, radio astronomy, etc. etc.