
CS-GY 6763: Lecture 12

Spectral clustering, spectral graph theory.

NYU Tandon School of Engineering, Prof. Rajesh Jayaram
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SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural matrix

representations, and studying that matrix’s spectrum

(eigenvalues/eigenvectors).

For now assume G = (V ,E ) is an undirected, unweighted graph

with n nodes.
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MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n × n adjacency matrix A and

graph Laplacian L = D− A where D is the diagonal degree matrix

Di ,i = deg(vi ), and

Ai ,j =

1 if(i , j) ∈ E

0 otherwise
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MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n × n adjacency matrix A and

graph Laplacian L = D−A where D is the diagonal degree matrix.

Also common to look at normalized versions of both of these:

Ā = D−1/2AD−1/2 and L̄ = I−D−1/2AD−1/2.
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SPECTRAL GRAPH THEORY TIDBITS

Lemma

For k ≥ 1, the matrix Ak has the property that Ak
i ,j is the

number of walks of length k between vertices i and j (recall, a

walk is a path where vertices and edges can be repeated).
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SPECTRAL GRAPH THEORY TIDBITS

Lemma

For k ≥ 1, the matrix Ak has the property that Ak
i ,j is the

number of walks of length k between vertices i and j (recall, a

walk is a path where vertices and edges can be repeated).

Proof: Base case, A2
i ,j =

∑
k Ai ,kAk,j = number of vertices k

which are connected to both vi and vj .

In general Ak = Ak−1A =
∑

k A
k−1
i ,k Ak,j = number of walks

ending at a vertex k that is connected to vj .
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SPECTRAL GRAPH THEORY TIDBITS

� If L have k eigenvalues equal to 0, then G has k connected

components.

� Sum of cubes of A’s eigenvalues is equal to number of

triangles in the graph times 6.

� Sum of eigenvalues to the power q is proportional to the

number of q cycles.

Do you see why the last two facts follow from the earlier Lemma?
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THE LAPLACIAN VIEW

L = BTB where B is the signed “edge-vertex incidence” matrix.

B =
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THE LAPLACIAN VIEW

BTB = b1b
T
1 + b2b

T
2 + . . .+ bmb

T
m,

where bi is the i th row of B (each row corresponds to a single

edge).
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THE LAPLACIAN VIEW

Conclusions from L = BTB

� L is positive semidefinite: xTLx ≥ 0 for all x.

� L = VΣ2VT where UΣVT is B’s SVD. Columns of V are

eigenvectors of L.

� For any vector x ∈ Rn,

xTLx =
∑

(i ,j)∈E

(x(i)− x(j))2.
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THE LAPLACIAN VIEW

xTLx =
∑

(i ,j)∈E (x(i)− x(j))2. So xTLx is small if x is a

“smooth” function with respect to the graph.

Eigenvectors of the Laplacian with small eigenvalues correspond to

smooth functions over the graph.
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SMALLEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

vn = argmin
∥v∥=1

vTLv

vn−1 = argmin
∥v∥=1,v⊥vn

vTLv

vn−2 = argmin
∥v∥=1,v⊥vn,vn−1

vTLv

...

v1 = argmin
∥v∥=1,v⊥vn,...,v2

vTLv
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LARGEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

v1 = argmax
∥v∥=1

vTLv

v2 = argmax
∥v∥=1,v⊥v1

vTLv

v3 = argmax
∥v∥=1,v⊥v1,v2

vTLv

...

vn = argmax
∥v∥=1,v⊥v1,...,vn−1

vTLv
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EXAMPLE APPLICATION OF SPECTRAL GRAPH THEORY

� Study graph partitioning problem important in 1)

understanding social networks 2) nonlinear clustering in

unsupervised machine learning (spectral clustering).

� See how this problem can be solved approximately using

Laplacian eigenvectors.

� Give a full analysis of the method for a common random

graph model.

� Use two tools: matrix concentration and eigenvector

perturbation bounds.
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BALANCED CUT

Common goal: Given a graph G = (V ,E ), partition nodes along

a cut that:

� Has few crossing edges: |{(u, v) ∈ E : u ∈ S , v ∈ T}| is small.

� Separates large partitions: |S |, |T | are not too small.

Important in understanding community structure in social

networks.
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SOCIAL NETWORKS IN THE 1970S

Wayne W. Zachary (1977). An Information Flow Model for

Conflict and Fission in Small Groups.

“The network captures 34 members of a karate club, documenting links

between pairs of members who interacted outside the club. During the

study a conflict arose between the administrator ”John A” and instructor

”Mr. Hi” (pseudonyms), which led to the split of the club into two. Half

of the members formed a new club around Mr. Hi; members from the

other part found a new instructor or gave up karate. Based on collected

data Zachary correctly assigned all but one member of the club to the

groups they actually joined after the split.” – Wikipedia

Beautiful paper – definitely worth checking out!
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BALANCED CUT

Common goal: Given a graph G = (V ,E ), partition nodes along

a cut that:

� Has few crossing edges: |{(u, v) ∈ E : u ∈ S , v ∈ T}| is small.

� Separates large partitions: |S |, |T | are not too small.

Important in understanding community structure in social

networks.
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SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear

embedding, Isomap, etc.
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SPECTRAL GRAPH THEORY

There are many way’s to formalize Zachary’s problem:

β-Balanced Cut:

min
S

cut(S ,V \ S) such that min (|S |, |V \ S |) ≥ β for β ≤ .5

Sparsest Cut:

min
S

cut(S ,V \ S)
min (|S |, |V \ S |)

Most formalizations lead to computationally hard problems. Lots

of interest in designing polynomial time approximation algorithms,

but tend to be slow. In practice, much simpler methods based on

the graph spectrum are used.
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THE LAPLACIAN VIEW

Another conclusion from L = BTB:

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S

and c(i) = 1 for i ∈ T = V \ S :

cTLc =
∑

(i ,j)∈E

(c(i)− c(j))2 = 4 · cut(S ,T ). (1)
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THE LAPLACIAN VIEW

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S

and c(i) = 1 for i ∈ T :

� cTLc = 4 · cut(S ,T ).

� cT1 = |T | − |S |.

Want to minimize both cTLc (cut size) and cT1 (imbalance).
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THE LAPLACIAN VIEW

Equivalent formulation if we divide everything by
√
n so that c has

norm 1. Then c ∈ {− 1√
n

1√
n
}n and:

� cTLc = 4
n · cut(S ,T ).

� cT1 = 1√
n
(|T | − |S |).

Want to minimize both cTLc (cut size) and cT1 (imbalance).
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SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector/singular vector vn satisfies:

vn =
1√
n
· 1 = argmin

v∈Rn with ∥v∥=1
vTLv

with vTn Lvn = 0.
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, vn−1 is given by:

vn−1 = argmin
∥v∥=1, vTn v=0

vTLv

If vn−1 were binary {− 1√
n
, 1√

n
}n it would have:

� vTn−1Lvn−1 =
1
n cut(S ,T ) as small as possible given that

vTn−11 = |T | − |S | = 0.

� vn−1 would indicate the smallest perfectly balanced cut.

vn−1 ∈ Rn is not generally binary, but a natural approach is to

‘round’ the vector to obtain a cut.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVEC-

TOR

Find a good partition of the graph by computing

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with

vn−1(i) ≥ 0.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVEC-

TOR

Find a good partition of the graph by computing

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with

vn−1(i) ≥ 0.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most

commonly used variants of this approach, using the normalized

Laplacian L = D−1/2LD−1/2.

Important consideration: What to do when we want to split the

graph into more than two parts?
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SPECTRAL PARTITIONING IN PRACTICE

Spectral Clustering:

� Compute smallest ℓ eigenvectors vn−1, . . . , vn−ℓ of L.

� Represent each node by its corresponding row in V ∈ Rn×ℓ

whose columns are vn−1, . . . vn−ℓ.

� Row Vi ,∗ is the embedding of node i via ℓ-smallest

eigenvalues.

� Cluster these rows using k-means clustering (or really any

clustering method).

� Often we choose ℓ = k , but not necessarily.
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LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:
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LAPLACIAN EMBEDDING

Embedding with eigenvectors vn−1, vn−2: (linearly separable)
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WHY DOES THIS WORK?

Intuitively, since v ∈ v1, . . . vk are smooth over the graph,∑
i ,j∈E

(v[i ]− v[j ])2

is small for each coordinate. I.e. this embedding explicitly

encourages nodes connected by an edge to be placed in nearby

locations in the embedding.

Also useful e.g., in graph drawing.
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TONS OF OTHER APPLICATIONS!

Fast balanced partitioning algorithms are also use in distributing

data in graph databases, for partitioning finite element meshes in

scientific computing (e.g., that arise when solving differential

equations), and more.

Lots of good software packages (e.g. METIS).
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GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph along a

small cut between large pieces.

� No formal guarantee on the ‘quality’ of the partitioning.

� Would be difficult to analyze for general input graphs.

Common approach: Design a natural generative model that

produces random but realistic inputs and analyze how the

algorithm performs on inputs drawn from this model.

� Very common in algorithm design and analysis. Great way to

start approaching a problem.

� This is also the whole idea behind Bayesian Machine Learning

(can be used to justify ℓ2 linear regression, k-means

clustering, PCA, etc.)
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STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that would

allow us to understand partitioning?
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p, q) be a distribution over graphs on n nodes, split equally

into two groups B and C , each with n/2 nodes.

� Any two nodes in the same group are connected with

probability p (including self-loops).

� Any two nodes in different groups are connected with prob.

q < p.
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LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gn(p, q).

� Let A ∈ Rn×n be the adjacency matrix of G . What is E[A]?

Note that we are arbitrarily ordering the nodes in A by

group. In reality A would look “scrambled” as on the right.
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from Gn(p, q)

and A ∈ Rn×n be its adjacency matrix. (E[A])i ,j = p for i , j in

same group, (E[A])i ,j = q otherwise.

What are the eigenvectors

and eigenvalues of E[A]?

37



EXPECTED LAPLACIAN

What is the expected Laplacian Gn(p, q)?

A and L have the same eigenvectors and eigenvalue are equal up

to a shift.
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from Gn(p, q)

and A ∈ Rn×n be its adjacency matrix, what are the eigenvectors

and eigenvalues of E[A]?

E[A] · 1 =
(
(
n

2
− 1)p +

n

2
q
)
1

E[A] ·



1
...

1

−1
...

−1


=

(
(
n

2
− 1)p − n

2
q
)
·



1
...

1

−1
...

−1


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EXPECTED ADJACENCY SPECTRUM

� v1 ∼ 1 with eigenvalue λ1 =
(p+q)n

2 .

� v2 ∼ χB,C with eigenvalue λ2 =
(p−q)n

2 .

� χB,C (i) = 1 if i ∈ B and χB,C (i) = −1 for i ∈ C .

If we compute v2 then we recover the communities B and C !
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EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L], equivalently the

second largest of E[A], is χB,C – the indicator vector for the cut

between the communities.

� If the random graph G (equivilantly A and L) were exactly

equal to its expectation, partitioning using this eigenvector

would exactly recover communities B and C .

How do we show that a matrix (e.g., A) is close to its expectation?

Matrix concentration inequalities.

� Analogous to scalar concentration inequalities like Markovs,

Chebyshevs, Bernsteins.

41



MATRIX CONCENTRATION

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then

with high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For X ∈ Rn×d , ∥X∥2 = maxz∈Rd :∥z∥2=1 ∥Xz∥2.

For the stochastic block model application, we want to show that

the second eigenvectors of A and E[A] are close. How does this

relate to their difference in spectral norm?
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EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Sup-

pose A,A ∈ Rd×d are symmetric with ∥A − A∥2 ≤ ϵ

and eigenvectors v1, v2, . . . , vd and v̄1, v̄2, . . . , v̄d . Letting

θ(vi , v̄i ) denote the angle between vi and v̄i , for all i :

sin[θ(vi , v̄i )] ≤
ϵ

minj ̸=i |λi − λj |

where λ1, . . . , λd are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar

magnitudes.
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EIGENVECTOR PERTURBATION
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p ≥ O
(

log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(

log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(

√
pn)

minj ̸=i |λi − λj |
≤

O(
√
pn)

(p − q)n/2
= O

( √
p

(p − q)
√
n

)
Recall: E[A], has eigenvalues λ1 =

(p+q)n
2 , λ2 =

(p−q)n
2 , λi = 0 for i ≥ 3.

min
j ̸=i

|λi − λj | = min

(
qn,

(p − q)n

2

)
.

Assume
∣∣∣ (p−q)n

2 − 0
∣∣∣ will be the minimum of the two gaps. I.e. smaller

than
∣∣∣ (p+q)n

2 − (p−q)n
2

∣∣∣ = qn.
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APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sin θ(v2, v̄2) ≤ O
( √

p

(p−q)
√
n

)
. What does this give us?

� Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

� v̄2 is 1√
n
χB,C : the community indicator vector.

� Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to

∥v2 − v̄2∥22.

� So they differ in sign in at most O
(

p
(p−q)2

)
positions.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency

matrix A, if we compute its second large eigenvector v2 and assign

nodes to communities according to the sign pattern of this vector,

we will correctly assign all but O
(

p
(p−q)2

)
nodes.

� Why does the error increase as q gets close to p?

� Even when p − q = O(1/
√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.
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