
CS-GY 6763: Lecture 13

Introduction to Spectral Sparsification

NYU Tandon School of Engineering, Prof. Rajesh Jayaram
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Announcements:

� Final Exam next week during class time.

� Will have full 2 hours for the exam.
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BACK TO SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding)

Let A ∈ Rn×d be a matrix. If Π ∈ Rm×n is chosen from any

distribution D satisfying the Distributional JL Lemma, then with

probability 1− δ,

(1− ϵ)∥Ax∥22 ≤ ∥ΠAx∥22 ≤ (1 + ϵ)∥Ax∥22

for all x ∈ Rd , as long as m = O
(
d+log(1/δ)

ϵ2

)
.

Implies regression result, and more.

Example: The any singular value σ̃i of ΠA is a (1± ϵ)

approximation to the true singular value σi of B.
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SUBSAMPLING METHODS

Important Goal: Replace random projection methods with

random sampling methods. Prove that for essentially all problems

of interest, can obtain same asymptotic runtimes.

Sampling has the added benefit of preserving matrix sparsity or

structure, and can be applied in a wider variety of settings where

random projections are too expensive.
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SUBSAMPLING METHODS

Goal: Can we use sampling to obtain subspace embeddings? I.e.

for a given A find Ã whose rows are a (weighted) subset of rows in

A and:

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1 + ϵ)∥Ax∥22.
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EXAMPLE WHERE STRUCTURE MATTERS

Let B be the edge-vertex incidence matrix of a graph G with

vertex set V , |V | = d . Recall that BTB = L.

Recall that if x ∈ {−1, 1}n is the cut indicator vector for a cut S in

the graph, then 1
4∥Bx∥

2
2 = cut(S ,V \ S). 6



LINEAR ALGEBRAIC VIEW OF CUTS

x = [1, 1, 1,−1, 1,−1,−1,−1]

x ∈ {−1, 1}d is the cut indicator vector for a cut S in the graph,

then 1
4∥Bx∥

2
2 = cut(S ,V \ S)
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WEIGHTED CUTS

Extends to weighted graphs, as long as square root of weights is

included in B. Still have the BTB = L.

And still have that if x ∈ {−1, 1}d is the cut indicator vector for a

cut S in the graph, then 1
4∥Bx∥

2
2 = cut(S ,V \ S).
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SPECTRAL SPARSIFICATION

Goal: Approximate B by a weighted subsample. I.e. by B̃ with

m ≪ |E | rows, each of which is a scaled copy of a row from B.

Natural goal: B̃ is a subspace embedding for B. In other words,

B̃ has ≈ O(d) rows and for all x,

(1− ϵ)∥Bx∥22 ≤ ∥B̃x∥22 ≤ (1 + ϵ)∥Bx∥22.
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HISTORY SPECTRAL SPARSIFICATION

B̃ is itself an edge-vertex incidence matrix for some sparser graph

G̃ , which preserves many properties about G ! G̃ is called a

spectral sparsifier for G .

For example, we have that for any set S ,

(1− ϵ) cutG (S ,V \ S) ≤ cutG̃ (S ,V \ S) ≤ (1 + ϵ) cutG (S ,V \ S).

So G̃ can be used in place of G in solving e.g. max/min cut

problems, balanced cut problems, etc.

In contrast ΠB would look nothing like an edge-vertex incidence

matrix if Π is a JL matrix.
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HISTORY OF SPECTRAL SPARSIFICATION

Spectral sparsifiers were introduced in 2004 by Spielman and Teng

in an influential paper on faster algorithms for solving Laplacian

linear systems.

� Generalize the cut sparsifiers of Benczur, Karger ‘96.

� Further developed in work by Spielman, Srivastava + Batson,

‘08.

� Have had huge influence in algorithms, and other areas of

mathematics – this line of work lead to the 2013 resolution of

the Kadison-Singer problem in functional analysis by Marcus,

Spielman, Srivastava.

Rest of class: Learn about an important random sampling

algorithm for constructing spectral sparsifiers, and subspace

embeddings for matrices more generally.
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NATURAL FIRST ATTEMPT

Goal: Find Ã such that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Possible Approach: Construct Ã by uniformly sampling rows

from A.

Can check that this approach fails even for the special case of a

graph vertex-edge incidence matrix. 12



IMPORTANCE SAMPLING FRAMEWORK

Key idea: Importance sampling. Select some rows with higher

probability.

Suppose A has n rows a1 . . . , an. Let p1, . . . , pn ∈ [0, 1] be

sampling probabilities. Construct Ã as follows:

� For i = 1, . . . , n

� Select ai with probability pi .

� If ai is selected, add the scaled row 1√
pi
ai to Ã.

Remember, ultimately want that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Claim 1: E[∥Ãx∥22] = ∥Ax∥22.

Claim 2: Expected number of rows in Ã is
∑n

i=1 pi .
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LECTURE OUTLINE

How should we choose the probabilities p1, . . . , pn?

1. Introduce the idea of row leverage scores.

2. Motivate why these scores make for good sampling

probabilities.

3. Prove that sampling with probabilities proportional to these

scores yields a subspace embedding (or a spectral sparsifier)

with a near optimal number of rows.
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MAIN RESULT

Let A = UΣVT be the SVD of A ∈ Rn×d . We define the

statistical leverage score τi of row Ai as:

τi = ∥Ui∥22

i.e., τi is the norm of the i-th row of the left singular vector matrix

U ∈ Rn×d .

� We will show that τi is a natural importance measure for each

row in A.
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MAIN RESULT

Let A = UΣVT be the SVD of A ∈ Rn×d . We define the

statistical leverage score τi of row Ai as:

τi = ∥Ui∥22

i.e., τi is the norm of the i-th row of the left singular vector matrix

U ∈ Rn×d .

� We will show that τi is a natural importance measure for each

row in A.

Fact: We have that τi ∈ [0, 1] for all i ∈ [n], and
∑n

i=1 τi = d if A

is rank d .

� Follows from orthonormality of columns of U
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MAIN RESULT

For i = 1, . . . , n,

τi = ∥Ui∥22

Theorem (Subspace Embedding from Subsampling)

For each i , and fixed constant c , let pi = min
(
1, c log d

ϵ2
· τi

)
. Let

Ã have rows sampled from A with probabilities p1, . . . , pn. With

probability 9/10, for all x ∈ Rd .

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1 + ϵ)∥Ax∥22,

and Ã has O(d log d/ϵ2) rows in expectation.
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VECTOR SAMPLING

How should we choose the probabilities p1, . . . , pn?

As usual, consider a single vector x and understand how to sample

to preserve norm of y = Ax:

∥Ãx∥22 = ∥SAx∥22 = ∥Sy∥22 ≈ ∥y∥22 = ∥Ax∥22.

Then we can union bound over an ϵ-net to extend to all x.
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VECTOR SAMPLING

As discussed a few lectures ago, uniform sampling only works well

if y = Ax is “flat”.

Instead consider sampling with probabilities at least proportional to

the magnitude of y’s entries:

pi > c ·
y2i
∥y∥22

for constant c to be determined.
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VARIANCE ANALYSIS

Let ỹ be the subsampled y. Recall that, when sampling with

probabilities p1, . . . , pn, for i = 1, . . . , n we add yi to ỹ with

probability pi and reweight by 1√
pi
.

∥ỹ∥22 =
n∑

i=1

y2i
pi

· Zi where Zi =

1 with probability pi

0 otherwise

Var[∥ỹ∥22] =
n∑

i=1

y2i
pi

· Var[Zi ] ≤
n∑

i=1

y4i
p2i

· pi =
y4i
pi

We set pi = c · y2
i

∥y∥22
so get total variance:

1

c
∥y∥42
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VARIANCE ANALYSIS

Using a Bernstein bound (or Chebyshev’s inequality if you don’t

care about the δ dependence) we have that if c = log(1/δ)
ϵ2

then:

Pr[
∣∣∥ỹ∥22 − ∥y∥22

∣∣ ≥ ϵ∥y∥22] ≤ δ.

The number of samples we take in expectation is:

n∑
i=1

pi =
n∑

i=1

c ·
y2i

∥yi∥22
=

log(1/δ)

ϵ2
.
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MAJOR CAVEAT!

We don’t know y1, . . . , yn! And in fact, these values aren’t fixed.

We wanted to prove a bound for y = Ax for any x.

Idea behind leverage scores: Sample row i from A using the

worst case (largest necessary) sampling probability:

τi = max
x

y2i
∥y∥22

where y = Ax.

If we sample with probability pi =
1
ϵ2
· τi , then we will be sampling

by at least 1
ϵ2
· y2

i

∥y∥22
, no matter what y is.

Two concerns:

1) How to compute τ1, . . . , τn?

2) the number of samples we take will be roughly
∑n

i=1 τi . How do

we bound this?
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LEVERAGE SCORE SAMPLING

Claim: τi = ∥Ui∥22 = maxx
(Ax)2i
∥Ax∥22

is the i-th leverage score!

(Ax)2i
∥Ax∥22

=
(U(ΣVT x))2i
∥UΣVT x∥22

=
(U(ΣVT x))2i
∥ΣVT x∥22

=
(Uz)2i
∥z∥22

=
⟨Ui , z⟩2

∥z∥22
≤ ∥Ui∥22

where z = ΣVT x . Here we used Cauchy-Schwarz’s inequality:

⟨Ui , z⟩2 ≤ ∥Ui∥22∥z∥22

Where equality holds when z is parallel to Ui .
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LEVERAGE SCORE SAMPLING

Leverage score sampling:

� For i = 1, . . . , n,

� Compute τi = ∥Ui∥22, where U ∈ Rn×k are left singular vectors

of A.

� Set pi =
c log(1/δ)

ϵ2 · τi .
� Add row ai to Ã with probability pi and reweight by 1√

pi
.

For any fixed x, we will have that

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1 + ϵ)∥Ax∥22 with probability (1− δ).

How many rows do we sample in expectation?
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SUM OF LEVERAGE SCORES

Claim: No matter how large n ≥ d is, for any matrix A ∈ Rn×d ,

we have
∑n

i=1 τi ≤ d .

“Zero-sum” law for the importance of matrix rows.
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LEVERAGE SCORE SAMPLING

Leverage score sampling:

� For i = 1, . . . , n,

� Compute τi = ∥Ui∥22, where A = UΣVT .

� Set pi =
c log(1/δ)

ϵ2 · τi .
� Add row ai to Ã with probability pi and reweight by 1√

pi
.

For any fixed x, we will have that

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1 + ϵ)∥Ax∥22 with prob. 1− δ.

Since
∑n

i=1 pi =
c log(1/δ)

ϵ2
·
∑n

i=1 τi , the sampled matrix Ã contains

O
(
d log(1/δ)

ϵ2

)
rows in expectation.

Last step: extend to all x with an ϵ-net!
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MAIN RESULT

Naive ϵ-net argument leads to d2 dependence since we need to set

δ = cd . Gives “weaker” theorem:

Theorem (Subspace Embedding from Subsampling)

For each i , and fixed constant c , let pi = min
(
1, cd

ϵ2
· τi

)
. Let Ã

have rows sampled from A ∈ Rn×d with probabilities p1, . . . , pn.

With probability 9/10, for all x ∈ Rd :

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1 + ϵ)∥Ax∥22,

and Ã has O(d2/ϵ2) rows in expectation.
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MAIN RESULT

Naive ϵ-net argument leads to d2 dependence since we need to set

δ = cd . Gives “weaker” theorem:

Theorem (Subspace Embedding from Subsampling)

For each i , and fixed constant c , let pi = min
(
1, cd

ϵ2
· τi

)
. Let Ã

have rows sampled from A ∈ Rn×d with probabilities p1, . . . , pn.

With probability 9/10, for all x ∈ Rd :

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1 + ϵ)∥Ax∥22,

and Ã has O(d2/ϵ2) rows in expectation.

Not good enough for graph sparsification!

If G = (V ,E ), then d = |V | and n = |E |, so d2 ≥ n, and we

sample all edges!
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IMPROVING TO Õ(D/ϵ2) SAMPLES

Lets modify algorithm to sample only (and exactly) k = O(d log d
ϵ2

)

rows of A. Let (q1, . . . , qn) be the distribution over [n] given by

qi =
τi∑
j τj

=
∥Ui∥22
d .

� For i = 1, . . . , k ,

� Sample j ∼ [n] from the distribution (q1, . . . , qn).

� Add row aj to Ã and reweight by 1√
kqj

.

We can let S ∈ Rk×n be the sampling and re-scaling matrix, such

that SA = Ã

Getting the improved d log d dependence requires a new tool: the

Matrix Chernoff bound
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MAIN RESULT

Theorem (Subspace Embedding from Subsampling)

For each i , and fixed constant c , let q = (q1, . . . , qn) be the

distribution over [n] given by qi =
τi∑
j τj

. Let S ∈ Rk×n be a row

sampling matrix, where k = O(d log d
ϵ2

), such that Si =
1√
kqj

· ej
for each row i ∈ [k], where j ∼q [n] is drawn from the

distribution q. With probability 9/10, for all x ∈ Rd :

(1− ϵ)∥Ax∥22 ≤ ∥SAx∥22 ≤ (1 + ϵ)∥Ax∥22,

and Ã has O(d log d/ϵ2) rows in expectation.

Goal: Prove this stronger theorem
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SIMPLIFIED STRUCTURE

Claim 1: We can assume A = U ∈ Rn×d has orthogonal columns.

Proof: Convince yourself that the following two statements are

equivalent:

� For all x ∈ Rd : ∥SAx∥2 = (1± ϵ)∥Ax∥2
� For all x ∈ Rd : ∥SUx∥2 = (1± ϵ)∥Ux∥2

In both cases, Ax ∈ Rn and Ux ∈ Rn range over the full

k-dimensional subspace W spanned by the columns of A! Equiv to

∥Sy∥2 = (1± ϵ)∥y∥2, for all y ∈ W
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SIMPLIFIED STRUCTURE

Claim 1: We can assume A = U ∈ Rn×d has orthogonal columns.

Proof: Convince yourself that the following two statements are

equivalent:

� For all x ∈ Rd : ∥SAx∥2 = (1± ϵ)∥Ax∥2
� For all x ∈ Rd : ∥SUx∥2 = (1± ϵ)∥Ux∥2

In both cases, Ax ∈ Rn and Ux ∈ Rn range over the full

k-dimensional subspace W spanned by the columns of A! Equiv to

∥Sy∥2 = (1± ϵ)∥y∥2, for all y ∈ W

Thus, our goal for a subspace embedding is to show that

∥SUx∥22 = (1± ϵ)∥Ux∥22 for all x ∈ Rd .
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SIMPLIFIED STRUCTURE

Claim 2: It suffices to show that ∥UTSTSU− I∥2 ≤ ϵ.

Proof:∣∣∥SUx∥22 − ∥Ux∥22
∣∣ = ∣∣∣xTUTSTSUx − xT Ix

∣∣∣
=

∣∣∣xT (
UTSTSU− I

)
x
∣∣∣

≤ ∥UTSTSU− I∥2∥x∥2 ≤ ϵ∥Ux∥22

Where we used ∥A∥2 = maxx
xTAx
∥x∥2 for any symmetric matrix A.

Follows that

∥SUx∥22 = (1± ϵ)∥Ux∥22
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LEVERAGE SCORE SAMPLING

Recall our algorithm, that samples k = O(d log d
ϵ2

) rows of A. Let

(q1, . . . , qn) be the distribution over [n] given by

qi =
τi∑
j τj

=
∥Ui∥22
d .

� For i = 1, . . . , k ,
� Sample j ∼ [n] from the distribution (q1, . . . , qn).

� Add row aj to Ã and reweight by 1√
kqj

.

We can let S ∈ Rk×n be the sampling and re-scaling matrix, such

that SA = Ã

Summary of Claims 1 + 2: It suffices to show that

∥UTSTSU− I∥2 ≤ ϵ

where A = UΣVT is the SVD.
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SIMPLIFIED STRUCTURE

Summary: It suffices to show that ∥UTSTSU− Id∥2 ≤ ϵ, where

A = UΣVT is the SVD.

Let sj ∈ [n] be the index of the j-th row we sample in our

algorithm. We have

UTSTSU =
k∑

j=1

UT
sj
Usj

k · qsj

Notice that

Esj

 k∑
j=1

UT
sj
Usj

k · qsj

 =
k∑

j=1

n∑
i=1

qi ·
UT

i Ui

kqi

= k · 1
k
UTU = Id
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SIMPLIFIED STRUCTURE

We have UTSTSU =
∑

j

UT
sj
Usj

kqsj
, and

1

k
Esj

 k∑
j=1

UT
sj
Usj

qsj

 = Id

If we define Xj = Id −
UT

sj
Usj

qsj
, we have E[ 1k

∑k
j=1Xj ] = 0, and

1

k

k∑
j=1

Xj = Id −UTSTSU

Now we want concentration: show 1
k

∑k
j=1Xj is close to its

expectation!
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RANDOM MATRIX CONCENTRATION

We have i.i.d. random matrices X1,X2, . . . ,Xk , with mean zero:

E[ 1k
∑k

i=1Xi ] = 0.

We need 1
k

∑k
i=1Xi to concentrate around its expectation in

spectral norm!

We want: ∥∥∥∥∥1k
k∑

i=1

Xi

∥∥∥∥∥
2

= ∥Id −UTSTSU∥2 < ϵ

with high probability.

To achieve this, we will use Matrix Concentration Inequalities!
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MATRIX CHERNOFF BOUNDS

Generalization from concentration of sums of random numbers, to

sums of random matrices.

Theorem

Let X1,X2, . . . ,Xk be i.i.d. copies of a symmetric random matrix

X ∈ Rd×d , with

� E[X] = 0 (zero mean)

� ∥X∥2 ≤ γ with probability 1. (bounded norm)

� ∥E[XTX]∥2 ≤ σ2. (matrix variance)

Then for any ϵ > 0, we have

Pr

[∥∥∥∥∥1k
k∑

i=1

Xi

∥∥∥∥∥ > ϵ

]
≤ 2d · e−

kϵ2

σ2+γϵ/3
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MATRIX CHERNOFF BOUNDS

Recall: X = Id − UT
i Ui

qi
, where i ∼ [n] is sampled according to

(p1, . . . , pn). We have E[X] = 0.

∥X∥2 ≤ ∥Id∥2 +max
i

∥
UT

i Ui

qi
∥2 ≤ 1 + max

i

∥Ui∥22
qi

≤ 1 + d
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MATRIX CHERNOFF BOUNDS

Recall: X = Id − UT
i Ui

qi
, where i ∼ [n] is sampled according to

(p1, . . . , pn). We have E[X] = 0.

∥X∥2 ≤ ∥Id∥2 +max
i

∥
UT

i Ui

qi
∥2 ≤ 1 + max

i

∥Ui∥22
qi

≤ 1 + d

∥∥∥E [
XTX

]∥∥∥
2
≤ Id − 2Ei∼(q1,...,qn)

[
UT

i Ui

qi

]
+ Ei∼(q1,...,qn)

[
UT

i UiU
T
i Ui

q2i

]
=

∑
i

UT
i UiU

T
i Ui

q2i
· qi − Id

⪯ d
∑
i

UT
i Ui − Id ⪯ (d − 1)Id

So γ < O(d) and σ2 ≤ O(d).
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MATRIX CHERNOFF BOUNDS

Theorem

Let X1,X2, . . . ,Xk be i.i.d. copies of a symmetric random matrix

X ∈ Rd×d , with E[X] = 0, ∥X∥2 ≤ γ, and ∥E[XTX]∥2 ≤ σ2.

Then for any ϵ > 0, we have

Pr

[∥∥∥∥∥1k
k∑

i=1

Xi

∥∥∥∥∥ > ϵ

]
≤ 2d · e−

kϵ2

σ2+γϵ/3

We have γ < O(d) and σ2 ≤ O(d). So setting k = (d log d/ϵ2)

Pr
[∥∥∥UTU− Id

∥∥∥
2
> ϵ

]
≤ 2d · e−

kϵ2

Θ(d) ≤ 1

d

This is what we needed to show!
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MAIN RESULT

Using matrix concentration inequalities, we obtain the tighter

bound of k = O(d log d
ϵ2

) samples.

Theorem (Subspace Embedding from Subsampling)

For each i , let qi =
∥Ui∥22
d . Let Ã ∈ Rk×n have k = O(d log d

ϵ2
)

rows sampled from A ∈ Rn×d via the distribution (q1, . . . , qn),

and scaled by 1/
√
qik . With probability 9/10, for all x ∈ Rd :

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1 + ϵ)∥Ax∥22,

42



SPECTRAL SPARSIFICATION COROLLARY

For any graph G with n nodes with m edges, there exists a graph

G̃ with O(n log n/ϵ2) edges such that, for all x,

∥B̃x∥22 = (1± ϵ)∥Bx∥22.

As a result, the value of any cut in G̃ is within a (1± ϵ) factor of

the value in G , the Laplacian eigenvalues are with a (1± ϵ)

factors, etc.
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FAST ALGORITHMS FOR MAX FLOW/MIN CUT

Theorem: There is an algorithm for computing a (1− ϵ) optimal

max s-t flow in time O(mn1/3 poly(1/ϵ)), and a min s-t cut in time

O(m + n4/3 poly(1/ϵ)).

Electrical flows, Laplacian systems, and faster approximation of

maximum flow in undirected graphs, Christiano, Kelner, Madry,

Spielman, Teng (STOC ’11)

Rough idea: Sparisfy graph, then run known max-flow/min-cut

algorithms on spectral sparsifier.

44


