
CS-GY 6763/CS-UY 3943: Lecture 1

Course introduction, concentration of random

variable, applications

NYU Tandon School of Engineering,

Prof. Rajesh Jayaram

1

Algorithms in the Age of Big Data

Algorithmic Machine Learning and Data Science

Statistics, machine learning, and data science study how to

use data to make better decisions or discoveries.

In this class, we study how to do so as quickly as possible,

or with limited computational resources.

2

Applications by the Numbers

� Twitter receives 6,000 tweets every second.

� Google receives ≈ 10,000 Maps queries every second.

� NASA collects 6.4 TB of satallite images every day.

� Large Synoptic Survey Telescope will collect 20 TB of

images every night.

� MIT/Harvard Broad Institute sequences 24 TB of genetic

data every day.

3

New Age of Algorithm Design

Modern demands for enormous data have ushered in a new

“golden age” for algorithms research.

� Historically, “polynomial time” was the gold standard for

algorithms. Today, this is usually no longer nearly good

enough.

� Often, we now need linear, or even sublinear time and space

algorithms. Commonly, data cannot fit in-memory.

� Motivated the study of new computational modes: streaming,

distributed algorithms (i.e. MapReduce, Spark),

4

Course Topics

(1) Randomized methods.

(2) Optimization.

(3) Spectral methods and linear algebra.

(4) Fourier methods & compressed sensing.

5

Randomized Methods

Section 1: Randomized Algorithms.

It is hard to find an algorithms paper in 2021 that does not use

randomness in some way.

� Probability tools and concentration of random variables (Markov,

Chebyshev, Chernoff/Bernstein inequalities).

� Random hashing for fast data search, load balancing, and more.

Locality sensitive hashing, MinHash, SimHash, etc.

� Sketching and streaming algorithms for compressing and processing

data on the fly.

� High-dimensional geometry and the Johnson-Lindenstrauss lemma

for compressing high dimensional vectors.

6

Optimization

Section 2: Optimization.

Optimization has become the algorithmic workhorse of modern

machine learning.

� Gradient descent, stochastic gradient descent, and how to analyze

these methods.

� Acceleration, conditioning, preconditioning, adaptive gradient

methods.

� Discrete optimization: Clustering, submodularity, and greedy

methods.

7

Spectral Methods

Section 3: Spectral methods and linear algebra.

“Complex math operations (machine learning, clustering, trend

detection) [are] mostly specified as linear algebra on array data” –

Michael Stonebraker, Turing Award Winner

� Singular value decompositions and eigendecomposition.

� Spectral graph theory: i.e. linear algebraic tools to analyze large

graphs (social networks, co-purchased graph, etc.).

� Spectral clustering and non-linear dimensionality reduction.

� Sketching methods for regression & and low-rank approximation.

8

Fourier Methods

Section 4: Fourier methods.

� Compressed sensing, sparse recovery, and their applications.

� Fast Fourier Transform-based methods.

� Fourier perspective on machine learning techniques like kernel

methods, and the algorithmic benefits.

9

What we won’t cover

Software tools or frameworks. MapReduce, Tensorflow, Spark,

etc. If you are interested CS-GY 6513 might be a good course.

Machine Learning Models + Techniques. Neural nets,

reinforcement learning, Bayesian methods, unsupervised learning,

etc. I assume you have already had a course in ML and the focus

of this class is on computational considerations.

But if your research is in machine learning, I think you will find the

theoretical tools we learn are more broadly applicable than in

designing faster algorithms.

10

Our Approach

This is primarily a theory course.

� Emphasis on proofs of correctness, bounding asymptotic runtimes,

convergence analysis, etc. Why?

� Learn how to model complex problems in simple ways.

� Learn powerful mathematical tools that can be applied in a wide

variety of problems (in your research, in industry, etc.)

� The homework requires creative problem solving and thinking

beyond what was covered in class. You will not be able to solve

many problems on your first try!

You will need a good background in probability and linear algebra. See

the syllabus for more details. Ask me is you are still unsure.

11

Course Structure and Logistics

All of this information is on the course webpage

https://rajeshjayaram.com/amlds2022 and in the syllabus

posted there! Please take a look.

Class structure:

� 2.5 hour lecture once a week, with 15 minute break mid-way.

� Office hours from me and TAs once a week. Mine will be

virtual.

Tech tools:

� Website for up-to-date info, lecture notes, readings.

� Ed discussion for questions about material.

� NYU Brightspace for turning in assignments.

12

https://rajeshjayaram.com/amlds2022

Course Structure and Logistics

Class work:

� 4 problem sets (50% of course grade).

� These are challenging, and the most effective way to

learn the material. I recommend you start early, work

with others, ask questions on Ed, etc.

� You must write-up solutions on your own.1

� Midterm (15% of course grade).

110% bonus on first problem set for using LaTex. It should save you time in

the long run!

13

Course Structure and Logistics

Final project or final exam (25% of grade):

� Final exam will be similar to midterm and problem sets.

� Final project can be based on a recent algorithms paper, and

can be either an experimental or theoretical project. Work

alone or in a pair.

� Others can join as well – it’s a great opportunity to get better

at reading and presenting papers.

14

Course Structure and Logistics

Class participation (10% of grade):

� My goal is to know you all individually by the end of this

course.

� Lots of ways to earn the full grade: participation in lecture,

office hours, or Ed discussion. Effort on the project.

15

Course Structure and Logistics

Important note:

� This is a mixed undergraduate/graduate course.

� Workload is the same, but undergraduates are graded on a

different “curve”.

16

Questions?

16

This Class

Goal: Demonstrate how even the simplest tools from probability

can lead to a powerful algorithmic results.

Lecture applications:

� Estimating set size from samples.

� Finding frequent items with small space.

Problem set applications:

� Group testing for COVID-19.

� Smarter load balancing.

� Estimating Distinct Elements in a Stream

17

Probability Review

Let X be a random variable taking value in some set S. I.e. for a
dice, S = {1, . . . , 6}. For a continuous r.v., we might have S = R.

� Expectation: E[X] =
∑

s∈S Pr[X = s] · s

For continuous r.v., E[X] =
∫
s∈S Pr(s) · s ds.

� Variance: Var[X] = E[(X − E[X])2]

Exercise: For any scalar α, E[αX] = αE[X]. Var[αX] = α2 Var[X]. 18

Probability Review

Let A and B be random events.

� Joint Probability: Pr(A ∩ B). Probability that both

events happen.

� Conditional Probability: Pr(A | B) = Pr(A∩B)
Pr(B) . Probability

A happens conditioned on the event that B happens.

� Independence: A and B are independent events if:

Pr(A | B) = Pr(A). Equivalently: Pr(A ∩ B) = Pr(A) · Pr(B).

Let X and Y be random variables. X and Y are independent if,

for all events s, t, the random events [X = s] and [Y = t] are

independent.

19

rajes
Pencil

The most powerful theorem in all of probability?

Linearity of expectation:

E[X + Y] = E[X] + E[Y]

20

Related equations

Always, sometimes, or never?

For random variables X ,Y :

� E[XY] = E[X] · E[Y].

� Var[X + Y] = Var[X] + Var[Y].

� Var[X] = E[X 2]− E[X]2.

21

rajes
Pencil

rajes
Pencil

First Application

You run a web company that is considering contracting with a

vendor that provides CAPTCHAs for logins.

They claim to have a database of n = 1, 000, 000 unique

CAPTCHAs in their database, and a random one will be shown on

each API call to their service.

Question: Roughly how many queries to the API, m, would you

need to verify the claim that there are ∼ 1 million unique puzzles?

22

First Application

First attempt: Count how many unique CAPTCHAs you see,

until you find roughly 1, 000, 000.

As a function of n, how many queries m do you need to see at

least 9
10n unique CAPTCHAs?

Bonus: How many queries do you need to see exactly n? This is

known as the Coupon Collector Problem

23

rajes
Pencil

An Improved Approach

Clever alternative: Count how many duplicate CAPTCHAs you

see. If you see the same CAPTCHA on query i and j , that’s one

duplicate. If you see the same CAPTCHA on queries i , j , and k ,

that’s three duplicates: (i , j), (i , k), (j , k).

24

An Improved Approach

Question: How many duplicates do we expect to see?

Let Di ,j = 1 if queries i , j return the same CAPTCHA, and 0

otherwise.

This is called an indicator random variable.

Di ,j = 1[CAPTCHA i equals CAPTCHA j]

Number of duplicates D is :

D =
∑

i ,j∈{1,...,m}
i<j

Di ,j .

What is E[D]?

25

rajes
Pencil

An Improved Approach

Question: How many duplicates do we expect to see? Formally,

what is E[D]?

E[D] =

n = number of CAPTCHAS in database, m = number of test queries.

Di,j = indicator for event CAPTCHA i and j collide.

26

rajes
Pencil

Some Hard Numbers

Suppose you take m = 1000 queries and see 10 duplicates. How

does this compare to the expectation if the database actually has

n = 1, 000, 000 unique CAPTCHAs?

E[D] =
m(m − 1)

2n
= .4995.

Something seems wrong... this random variable D came up much

larger than it’s expectation.

Can we say something formally?

n = number of CAPTCHAS in database, m = number of test queries.
27

rajes
Pencil

Concentration Inequalities

One of the most important tools in analyzing randomized

algorithms. Tell us how likely it is that a random variable X

deviates a certain amount from its expectation E[X].

We will learn three fundamental concentration inequalities:

1. Markov’s Inequality.

� Applies to non-negative random variables.

2. Chebyshev’s Inequality.

� Applies to random variables with bounded variance.

3. Hoeffding/Bernstein/Chernoff bounds.

� Applies to sums of independent random variables with

bounded variance.

28

Markov’s inequality

Theorem (Markov’s Inequality): For any random variable X

which only takes non-negative values any positive t,

Pr[X ≥ t] ≤ E[X]

t
.

Equivalently,

Pr[X ≥ α · E[X]] ≤ 1

α
.

29

rajes
Pencil

Markov’s inequality

Theorem (Markov’s Inequality): For any random variable X

which only takes non-negative values any positive t,

Pr[X ≥ t] ≤ E[X]

t
.

Equivalently,

Pr[X ≥ α · E[X]] ≤ 1

α
.

Proof:

E[X] =
∑
s∈S

Pr[X = s] · s

=
∑
s<t

Pr[X = s] · s +
∑
s≥t

Pr[X = s] · s

≥ 0 + t ·
∑
s≥t

Pr[X = s] = t · Pr[X ≥ t]

30

rajes
Pencil

Application to Captcha Problem

Suppose you take m = 1000 queries and see 10 duplicates. How

does this compare to the expectation if the database actually has

n = 1, 000, 000 unique CAPTCHAs?

E[D] =
m(m − 1)

2n
= .4995.

By Markov’s:

Pr[D ≥ 10] ≤ E[D]

10
< .05 if n actually equals 1 million.

We can be pretty sure we’re being scammed...

n = number of CAPTCHAS in database, m = number of test queries.

31

General Bound

Alternative view: If E[D] = m(m−1)
2n , then a natural estimator for

n is: ñ = m(m−1)
2D . We will now show:

Lemma

Setting m = Ω
(√

n
ϵ

)
and ñ = m(m−1)

2D , then with prob. 9
10 :

(1− ϵ)n ≤ ñ ≤ (1 + ϵ)n

This is a two-sided multiplicative (1± ϵ) error guarantee — the

gold standard in this course.

This is a lot better than our original method that required

O(n) queries!
32

rajes
Pencil

first set of tools

Linearity of Expectation + Markov’s Inequality

Primitive but powerful toolkit, which can be applied to a wide

variety of applications!

But, cannot bound probability that R.V.’s are small: i.e.

Pr[X ≪ E[X]]
33

Chebyshev’s Inequality

A new concentration inequality:

Lemma (Chebyshev’s Inequality)

Let X be a random variable with expectation E[X] and variance

σ2 = Var[X]. Then for any k > 0,

Pr[|X − E[X]| ≥ k · σ] ≤ 1

k2

σ =
√
Var[X] is the standard deviation of X . Intuitively this bound

makes sense: it is tighter when σ is smaller. 34

Chebyshev’s vs. Markov’s

Properties of Chebyshev’s inequality:

� Good: No requirement of non-negativity. X can be anything.

� Good: Two-sided. Bounds the probability that |X − EX | is large,
which means that X isn’t too far above or below its expectation.

Markov’s only bounded probability that X exceeds E[X].

� Bad/Good: Requires a bound on the variance of of X .

No hard rule for which to apply! Both Markov’s and Chebyshev’s

are useful in different settings.

35

rajes
Pencil

Proof of Chebyshev’s Inequality

Idea: Apply Markov’s inequality to the (non-negative) random variable

S = (X − E[X])2. Recall Var[D] = E[(X − E[x])2] = E[X 2]− E[X]2.

Lemma (Chebyshev’s Inequality)

Let X be a random variable with expectation E[X] and variance

σ2 = Var[X]. Then for any k > 0,

Pr[|X − E[X]| ≥ k · σ] ≤ 1

k2

Markov’s inequality: for positive r.v. S , Pr[S ≥ t] ≤ E[S]/t.
36

rajes
Pencil

Proof of Captcha Lemma

Lemma

Setting m = Ω
(√

n
ϵ

)
and ñ = m(m−1)

2D , then with prob 9
10 :

(1− ϵ)n ≤ ñ ≤ (1 + ϵ)n

By rearranging, it suffices to show

1

1 + ϵ
·
(
m

2

)
1

n
≤ D ≤ 1

1− ϵ
·
(
m

2

)
1

n

Where

D =
∑

i ,j∈{1,...,m}
i<j

1[xi = xj].

and x1, ..., xm are uniformly random Captchas. Recall that

E[D] =
(m
2

)
1
n .

a = (1± ϵ)b means (1− ϵ)b ≤ a ≤ (1 + ϵ)b

37

rajes
Pencil

rajes
Pencil

rajes
Pencil

Proof of Captcha Lemma

Using the notation Di ,j = 1[xi = xj]:

E

 ∑
i<j∈[m]

Di,j

2

≤
∑

i,j∈[m]

E[D2
i,j] +

∑
i,j,k∈[m]

E[Di,jDi,k] +
∑

i,j,k,t∈[m]

E[Di,jDt,k]

=

(
m

2

)
1

n
+

(
m

3

)
1

n2
+

(
m

4

)
1

n2

≤ m2

2n
+

m3

6n2
+

m4

24n2
≤ m2

2n
+

m4

4n2

38

rajes
Pencil

rajes
Pencil

Proof of Captcha Lemma

Using the notation Di ,j = 1[xi = xj]:

E

 ∑
i<j∈[m]

Di,j

2

≤
∑

i,j∈[m]

E[D2
i,j] +

∑
i,j,k∈[m]

E[Di,jDi,k] +
∑

i,j,k,t∈[m]

E[Di,jDt,k]

=

(
m

2

)
1

n
+

(
m

3

)
1

n2
+

(
m

4

)
1

n2

≤ m2

2n
+

m3

6n2
+

m4

24n2
≤ m2

2n
+

m4

4n2

So

Var[D] ≤ m2

2n
+

m4

4n2
− E[D]2

=
m2

2n
+

m4

4n2
− m2(m − 1)2

4n2

≤ m2

2n 39

rajes
Pencil

Proof of Captcha Lemma

We have Var[D] = m2

2n . So setting m = 10
√
n
ϵ , and plugging this

into Chebyshev’s Inequality:

Pr

[∣∣∣∣D − (
m

2

)
1

n

∣∣∣∣ ≤ ϵ

(
m

2

)
1

n

]
≤ m2

2n
·
(

2n

ϵm(m − 1)

)2

≤ 4

ϵ2
· n

m2
≤ 1

25

So

Pr

[
(1− ϵ)

(
m

2

)
1

n
≤ D ≤ (1 + ϵ)

(
m

2

)
1

n

]
>

24

25

From which the Lemma follows.

Chebyshev’s Inequality: Pr[|X − E[X]| ≥ k] ≤ Var[X]
k2

40

rajes
Pencil

Mark and Recaptcha

Fun facts:

� Known as the “mark-and-recapture” method in ecology.

� Can also be used by webcrawlers to estimate the size of the

internet, a social network, etc.

This is also closely related to the birthday paradox.

41

Streaming Algorithms

Important Model of Modern Computation: Motivating assumption is

the data is too large to fit in memory.

� Streaming data which arrives in real time: e.g. IP traffic logs,

financial transactions, Google search queries...

� Large Distributed Databases: must be processed while making a

single pass over the data, using a small amount of working memory.

Modeled by a sequence of updates to a high-dimensional “frequency”

vector f ∈ Rn.

Coordinates (also called “items”) i ∈ [n] can represent e.g. a user, IP

address, or Stock, and the frequency fi stores some associated value for

that coordinate (i.e. total network traffic, number of transactions, ect.).

42

rajes
Pencil

The Streaming Model, Formally

Streaming Model: Let f ∈ Rn be an implicit, high-dimensional vector,

initialized to zero (i.e. f = 0⃗). A insertion-only data stream is a sequence

of coordinate-wise “updates” a1, a2, . . . , am, where each at ∈ [n]. The

update to index i ∈ [n] causes the change

fat ← fat + 1

� Coordinates can represent IPv6 Addresses, Amazon customers,

Google Search Terms.

� n can be very large (e.g. 2128 possible IPv6 addresses). Thus, f

cannot be maintained explicitly in memory.

A streaming algorithm must observe the sequence a1, a2, . . . , am, and

then (approximately) answer queries about the final vector f using as

little space as possible.

43

rajes
Pencil

Other examples in practice

Sensor data: GPS or seismometer readings to detect geological

anomalies, telescope images, satellite imagery, highway travel time

sensors.

Web traffic and data: User data for website, including e.g. click

data, web searches and API queries, posts and image uploads on

social media.

Training machine learning models: Often done in a streaming

setting when training dataset is huge, often with multiple passes.

Lots of software frameworks exist for easy development of

streaming algorithms.

44

Frequent Items/Heavy Hitters

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of m

updates a1, . . . , am ∈ [n] to the coordinates of f ∈ Rn. Find all the

(1/k)-heavy hitters: namely return all items at appears at least m
k times.

� Finding top/viral items (i.e., products on Amazon, videos watched

on Youtube, Google searches, etc.)

� Finding very frequent IP addresses sending requests (to detect DoS

attacks/network anomalies).

� ‘Iceberg queries’ for all items in a database with frequency above

some threshold.

How much space does a streaming algorithm need to do this?

45

rajes
Pencil

Frequent Items/Heavy Hitters

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of m

updates a1, . . . , am ∈ [n] to the coordinates of f ∈ Rn. Find all the

(1/k)-heavy hitters: namely return all items at appears at least m
k times.

� Trivial with O(n) space – store the count for each item and return

the one that appears ≥ m/k times.

� Possible to do significantly better!

� What is the maximum number of (1/k)-Heavy Hitters?

a) m b) k c) n/k d) m/k

46

rajes
Pencil

Approximate frequent elements

Issue: No algorithm using o(m) space can output just the items

with frequency ≥ m/k .

Intuition: Hard to tell between an item with frequency m/k

(should be output) and m/k − 1 (should not be output).

Approximate k-Frequent Items Problem: Consider a stream of

m updates a1, . . . , am ∈ [n]. Return a set S of items, including all

items that appear at least m
k times and no items that appear less

than 1
2 ·

m
k times.

� For items with frequencies in [12 ·
m
k ,

m
k] no output guarantee.

47

rajes
Pencil

rajes
Pencil

Frequent Elements with Count-Min Sketch

Today: Count-min Sketch – a random hashing based method for

the frequent elements problem.

Due to a 2005 paper by Graham Cormode and Muthu

Muthukrishnan.

Has almost 2000 citations!

48

rajes
Pencil

Hashing

Let h be a random hash function from [n]→ [B]. This means that

h is a fixed function drawn uniformly from the set of all possible

functions H = {g : g : [n]→ [B]}. Once it is fixed, given any

input x ∈ U , it always returns the same output, h(x).

Definition: Uniformly Random Hash Function. A random

function h : U → {1, . . . ,m} is called uniformly random if:

� Pr[h(x) = i] = 1
B for all x ∈ [n], i ∈ {1, . . . ,B}.

� h(x) and h(y) are independent r.v.’s for all x , y ∈ [n].

� Which implies that Pr[h(x) = h(y)] =

[n] = {1, . . . , n} universe of possible keys, B = number of hash buckets. 49

rajes
Pencil

Hashing

Caveat: It is not possible to efficiently implement uniform random

hash functions, would require Ω(n) space to store the mapping!

But:

� In practice “random looking” functions like MD5, SHA256,

etc. often suffice.

� If we have time, we will discuss weaker hash functions (in

particular, k-wise independent functions) which are hash

functions used for theoretical analysis, and which are efficient

to implement.

For now, assume we have access to a uniformly random hash

function h, without worrying about the space needed to store it.

This is an assumption we will use in future lectures as well.

50

Count-Min Sketch

Input: Stream of updates a1, . . . , am ∈ [n] to the coordinates of

f ∈ Rn.

Count-Min Update:

� Choose random hash function h : [n]→ [B]

� For each update i = 1, . . . ,m

� Given update ai , set

A[h(ai)] = A[h(ai)] + 1

h: random hash function. m: size of Count-Min sketch array.
51

rajes
Pencil

Count-Min Sketch

From small space “sketch” A ∈ RB , we can estimate the frequency

of any item fi , fi =
∑m

t=1 1[at = i].

In particular, we simply return A[h(i)].

Claim 1: We always have A[h(i)] ≥ fi . Why?

fi : frequency of v in the stream. h: random hash function. m: size of

Count-Min sketch array. 52

rajes
Pencil

Count-Min Sketch Accuracy

A[h(i)] = fi +
∑
j ̸=i

1[h(j) = h(i)] · f (j)︸ ︷︷ ︸
error in frequency estimate

Expected Error:

E

∑
j ̸=i

1[h(j) = h(i)] · f (j)

 =

53

rajes
Pencil

Count-Min Sketch Accuracy

A[h(i)] = fi +
∑
j ̸=i

1[h(j) = h(i)] · f (j)

Expected Error:

E

∑
j ̸=i

1[h(j) = h(i)] · f (j)

 ≤ ∥f ∥1
B

=
m

B

What is a bound on probability that the error is ≥ 2∥f ∥1
B ?

Markov’s inequality: Pr
[∑

j ̸=i 1[h(j) = h(i)] · f (j) ≥ 2∥f ∥1
B

]
≤

fi : frequency of item i in the stream. h: random hash function. B: size

of Count-Min sketch array.

54

rajes
Pencil

Count-Min Sketch Accuracy

Claim: For any one coordinate i ∈ [n], with probability ≥ 1/2,

fi ≤ A[h(i)] ≤ fi + 2
∥f ∥1
B

To solve the k-Frequent elements problem, set B = .

How can we improve the success probability?

fi : frequency of item i in the stream. h: random hash function. B: size

of Count-Min sketch array.

55

rajes
Pencil

Count-Min Sketch Accuracy

fi : frequency of item i in the stream. h: random hash function. B: size

of Count-Min sketch array.
56

rajes
Pencil

Count-Min Sketch Accuracy

fi : frequency of item i in the stream. h: random hash function. B: size

of Count-Min sketch array. 57

Count-Min Sketch Accuracy

fi : frequency of item i in the stream. h: random hash function. B: size

of Count-Min sketch array.
58

Count-Min Sketch Accuracy

Estimate fi with f̃i = minj∈[t]Aj [hj(i)]. (Count-min sketch)

Why min instead of mean or median?

59

rajes
Pencil

Count-Min Sketch Accuracy

Estimate fi with f̃i = minj∈[t] Aj [hj(i)].

� For every coordinate i ∈ [n] and Count-Min Array Aℓ, for ℓ ∈ [t],

setting B = 8k we know that with prob. ≥ 1/2:

fi ≤ Aℓ[hℓ(i)] ≤ fi +
∥f ∥1
4k

� Pr
[
fi ≤ f̃i ≤ fi +

∥f ∥1

k

]
≥

� To get a good estimate with probability ≥ 1− δ,

set t =

.

60

rajes
Pencil

Count-Min Sketch

Theorem For any ϵ, δ ∈ (0, 1), for any i ∈ [n] Count-min sketch

yields an estimate f̃i of the frequency fi satisfying:

fi ≤ f̃i ≤ fi +
∥f ∥1
k

with probability ≥ 1− δ, using O
(
log(1/δ) · 1ϵ

)
words of space.

� Accurate enough to solve the k-Frequent elements problem –

distinquish between items with frequency n
k and those with

frequency 1
2 ·

n
k – by setting ϵ = Θ(1/k).

61

rajes
Pencil

Identifying frequent items

Observation: Count-min sketch gives an accurate frequency

estimate for each item in the stream, but finding heavy hitters

(fi ≥ ∥f ∥1/k) requires Ω(n) time!

Can we identify heavy hitters without having to compute f̃i for

each i ∈ [n]?

Yes: Solution is known as the Dyadic Trick*

*details to be posted in supplementary material on course website

62

Note on Hash Functions

Can we weaken our assumption that h is uniformly random?

Definition (Universal hash function)

A random hash function h : U → {1, . . . ,B} is universal if, for
any fixed x , y ∈ U ,

Pr[h(x) = h(y)] ≤ 1

B
.

Claim: A uniformly random hash-function is universal.

Efficient alternative: Let p be a prime number between |U| and
2|U|. Let a, b be random numbers in {0, . . . , p} with a ̸= 0.

h(x) = [a · x + b (mod p)] (mod B)

is universal. Note we only need to store a, b! Proof in

supplementary notes to be posted on website. 63

Note on Hash Functions

Another definition you might come across:

Definition (Pairwise independent hash function)

A random hash function h : U → {1, . . . ,B} is pairwise
independent if, for any fixed x , y ∈ U , i , j ∈ {1 . . . ,B},

Pr[h(x) = i ∩ h(y) = j] =
1

B2
.

Can we naturally extended to k-wise independence for k > 2,

which is strictly stronger, and needed for some applications.

64

