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Note on Mathematical Proofs

It can be hard to know how formal to be. We will try to provide feedback

on first problem set for anyone who is either too rigorous or too loose.

It’s a learning process.

Things that are generally fine:

� Can assume input size n is > C for some constant c . E.g.

n > 2, n > 10.

� Similarly can assume ϵ < c for constant c . E.g. ϵ < .1, ϵ < .01.

� If I write O(z), you are free to choose the constant. E.g., it’s fine if

your method only works for tables of size 1000 ·m1.5.

� Derivatives, integrals, etc. can be taken from e.g. WolframAlpha

without working through steps.

� Basic inequalities can be used without proof, as long as you verify

numerically. Don’t need to include plot on problem set.
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Example inequality

1 + ϵ ≤ 1

1− ϵ
≤ 1 + 2ϵ for ϵ ∈ [0, .5].

Proof by plotting:
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Example inequality

1− ϵ ≤ 1

1 + ϵ
≤ 1− .5ϵ for ϵ ∈ [0, 1].

Proof by plotting:
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General Advice

Tip: When confronted with a complex expression, try to simplify by

using big-Oh notation, or just rounding things off. Then clean-up your

proof after you get to a solution.

Examples:

� (m − 1) ≈ m

�
1
n −

1
n2 ≈

1
n

�

(
m−1
cm1.5

)2 ≈ O
(
1
m

)
.

� log(n/2) ≈ log(n)

Link to useful inequalities posted on website.
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Review of Chebyshev’s inequality

A new concentration inequality:

Lemma (Chebyshev’s Inequality)

Let X be a random variable with expectation E[X ] and variance

σ2 = Var[X ]. Then for any k > 0,

Pr[|X − E[X ]| ≥ k · σ] ≤ 1

k2

σ =
√
Var[X ] is the standard deviation of X . Intuitively this bound

makes sense: it is tighter when σ is smaller. 6
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Linearity of variance

Fact: For pairwise independent random variables X1, . . . ,Xm,

Var[X1 + X2 + . . .+ Xm] = Var[X1] + Var[X2] + . . .+ Var[Xm].

I.e., we require that for any i , j Xi and Xj are independent.

This is strictly weaker than mutual independence, which requires

that for all possible values v1, . . . , vk ,

Pr[X1 = v1, . . . ,Xk = vk ] = Pr[X1 = v1] · . . . · Pr[Xk = vk ].
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Quick example

If I flip a fair coin 100 times, show that with 93% chance I

get between 30 and 70 heads?

Let C1, . . . ,C100 be independent random variables that are 1 with

probability 1/2, 0 otherwise.

Let H =
∑100

i=1 Ci be the number of heads that get flipped.

E[H] =

Var[H] =
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Quick example

If I flip a fair coin 100 times, show that with 93% chance I

get between 30 and 70 heads?

Let C1, . . . ,C100 be independent random variables that are 1 with

probability 1/2, 0 otherwise.

Let H =
∑100

i=1 Ci be the number of heads that get flipped.

Var[H] = 25.

Chebyshev’s:
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Lecture road map

So far, we have seen the power of

� Linearity of Expectation + Markov’s Inequality

� Linearity of Variance + Chebyshev’s Inequality

Today, we will discuss one of the most powerful tools in all of

randomized algorithms:

Union Bound + Exponential Tail Bounds

These six simple tools form the cornerstone of randomized

algorithm design. 10



The Turnstile Streaming Model

Definition (Streaming Model)

Let f ∈ Rn be the implicit frequency vector, initialized to 0⃗. A turnstile

data stream is a sequence of updates (i1,∆1), (i2,∆2), . . . , (im,∆m),

where it ∈ [n] and ∆t ∈ Z. The update (it ,∆t) causes the change

fit ← fit +∆t

Note that updates ∆t can be negative. This is harder than the insertion

only model!

� Differences between streams (i.e. f := difference between IP traffic

sent through router A vs router B).

� Updates to high-dimensional gradients f = ∇g in SGD and other

optimization methods
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Heavy Hitters – more formally

Definition (ϵ-Heavy Hitters Problem)

Consider a stream of m updates (i1,∆1), (i2,∆2), . . . , (im,∆m),

resulting in a frequency vector f ∈ Rn. Return a set S ⊂ [n] containing

all indices i such that |fi | ≥ ϵ∥f ∥1, and no i such that |fi | ≤ ϵ
2∥f ∥1.

This generalizes the problem from last class, when we were promised that

fi ≥ 0 for all i ∈ [n]
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Recall Count-Min Sketch

Count-Min Update:

� Choose random hash functions h1, h2, . . . , ht : [n]→ [B]

� For each update ℓ = 1, . . . ,m

� Given update (iℓ,∆ℓ), for each j = 1, 2, . . . , t set

Aj [hj(iℓ)] = Aj [h(iℓ)] + ∆ℓ
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Count-Min Sketch

Estimate of count-min:

f̃i = min
j∈[t]

hj(i)
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Count-Min Sketch

Theorem

For any ϵ, δ ∈ (0, 1), when run on an insertion-only stream (i.e.,

∆ℓ ≥ 0 for all ℓ ∈ [m]), for any index i ∈ [n] Count-min sketch

yields an estimate f̃i of the frequency fi satisfying:

fi ≤ f̃i ≤ fi + ϵ∥f ∥1

with probability ≥ 1− δ, using O
(
log(1/δ) · 1ϵ

)
words of space.

� Analysis computed expectation and used Markov’s inequality.
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Count-Min Sketch Accuracy

Value of a Bucket

A[h(i)] = fi +
∑
j ̸=i

1[h(j) = h(i)] · fj︸ ︷︷ ︸
error in frequency estimate

Expected Error:

E

∑
j ̸=i

1[h(j) = h(i)] · fj

 ≤ ∑i∈[n] |fi |
B

=
∥f ∥1
B
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Count-Min Sketch Accuracy

A[h(i)] = fi +
∑
j ̸=i

1[h(j) = h(i)] · fj︸ ︷︷ ︸
error in frequency estimate

Expected Error:

E

∑
j ̸=i

1[h(j) = h(i)] · fj

 ≤ ∥f ∥1
B

Markov’s inequality: Pr
[∑

j ̸=i 1[h(j) = h(i)] · fj ≥ 2∥f ∥1
B

]
≤ 1

2

Where does this proof fail for turnstile streams?
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Enter the Matrix: Count-Sketch

Count-Sketch Update:

� Choose random hash functions h1, h2, . . . , ht : [n]→ [B], and

σ1, σ2, . . . , σt : [n]→ {1,−1}
� For each update ℓ = 1, . . . ,m

� Given update (iℓ,∆ℓ), for each j = 1, 2, . . . , t set

Aj [hj(iℓ)] = A[h(iℓ)] + σ(iℓ) ·∆ℓ
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Enter the Matrix: Count-Sketch

How can we estimate fi?

Aj [hj(i)] = σj(i) · fi +
∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk︸ ︷︷ ︸
error in frequency estimate

Expected Error

E

∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk

 =
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Enter the Matrix: Count-Sketch

Expected Error

E

∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk

 =
∑
k ̸=i

fk
B
· E [σj(k)fk ]

= 0

How can we show that∣∣∣∣∣∣
∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk

∣∣∣∣∣∣
is not too large?
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Back to the Variance

E[error] = 0. Variance of Error:

Var

∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk

 =
∑
k ̸=i

Var [1[h(k) = h(i)] · σj(k)fk ]

=
∑
k ̸=i

E[(1[h(k) = h(i)])2] · E[σ2
j (k)f

2
k ]
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Back to the Variance

E[error] = 0. Variance of Error:

Var

∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk

 =
∑
k ̸=i

Var [1[h(k) = h(i)] · σj(k)fk ]

=
∑
k ̸=i

E[(1[h(k) = h(i)])2] · E[·σ2
j (k)f

2
k ]

=
∑
k ̸=i

1

B
f 2k · E[σ2

j (k)]
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Back to the Variance

E[error] = 0. Variance of Error:

Var

∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk

 =
∑
k ̸=i

Var [1[h(k) = h(i)] · σj(k)fk ]

=
∑
k ̸=i

E[(1[h(k) = h(i)])2] · E[·σ2
j (k)f

2
k ]

=
∑
k ̸=i

1

B
f 2k · E[σ2

j (k)]

=
∑
k ̸=i

1

B
f 2k =

1

B
∥f ∥22

The Variance depends on the L2 norm of f !
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Back to Chebyshev’s

E[error] = 0. Variance of Error:

Var[
∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk︸ ︷︷ ︸
error in frequency estimate

] ≤ 1

B
∥f ∥22

Lemma (Chebyshev’s Inequality)

Let X be a random variable with expectation E[X ] and variance

σ2 = Var[X ]. Then for any k > 0, Pr[|X − E[X ]| ≥ k · σ] ≤ 1
k2

Using Chebyshev’s Inequality:

Pr

∣∣∣∣∣∣
∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk

∣∣∣∣∣∣ ≥ 2 · 1√
B
∥f ∥2

 ≤ 1

4
(1)
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Enter the Matrix: Count-Sketch

Can we still take the min?

f̃i = min
j∈[t]

Aj [hj(i)]
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Variance reduction

Taking min of multiple trials does not work, since error can be

negative!

Trick of the trade: Repeat many independent trials and take the

mean to get a better estimator.

Given i.i.d. (independent, identically distributed) random variables

X1, . . . ,Xn with mean µ and variance σ2, what is:

� E
[
1
n

∑n
i=1 Xi

]
=

� Var
[
1
n

∑n
i=1 Xi

]
=

26
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Variance reduction

Trick of the trade: Repeat many independent trials and take the

mean to get a better estimator.

Lemma

Given i.i.d. (independent, identically distributed) random

variables X1, . . . ,Xn with mean µ and variance σ2, for any α > 1

we have

Pr

[∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ α√
n
σ

]
≤ 1

α2
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Variance reduction

First Attempt: Repeat many independent trials and take the

mean to get a better estimator.

σj(i) · Aj [hj(i)] = fi + σj(i)
∑
k ̸=i

1[h(k) = h(i)] · σj(k)fk︸ ︷︷ ︸
error in frequency estimate

So we can set: f̃i =
1
t

∑
j∈[t] σj(i)Aj [σj(i)hj(i)]. Recall that

Var(Error) ≤ 1
B ∥f ∥

2
2. Setting B = Θ( 1

ϵ2
) and t = Θ(1δ ) yields:

Lemma

For any fixed i ∈ [n], the ”Count-Mean” Sketch outputs the

estimate f̃i such that

Pr
[∣∣∣f̃i − fi

∣∣∣ ≥ ϵ∥f ∥2
]
≤ δ

Using space O( 1
ϵ2δ

).
28
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Note on failure probability

O
(

1
ϵ2δ

)
space is an impressive bound, gives good estimates for a

single coordinate.

� Achieves any accuracy desired. 1/ϵ2 dependence cannot be

improved.

� But... 1/δ dependence is not ideal. For 95% success rate, pay

a 1
5% = 20 factor overhead in space.

� And this is just to be correct on one cordinate. What if we

want output a good estimate for all n coordinates?

� Note that with count-min, we did much better with a

O(log(1/δ)) dependency

We can get a better bound depending on O(log(1/δ)) using

exponential tail bounds.
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Why Failure Probabiltiy Matters

Suppose we want to find all coordinates |fi | ≥ 4ϵ∥f ∥1 and no coordinates

|fi | ≤ 2ϵ∥f ∥1 (i.e. solve the 4ϵ-heavy hitters problem).

Lemma

For any fixed i ∈ [n], the ”Count-Mean” Sketch outputs the estimate

f̃i such that

Pr
[∣∣∣f̃i − fi

∣∣∣ ≥ ϵ∥f ∥2
]
≤ δ

Using space O( 1
ϵ2δ ).

Since ∥f ∥2 ≤ ∥f ∥1, our error |f̃i − fi | ≤ ϵ∥f ∥2 is good enough for one

coordinate, but we need to be correct on all coordinates to solve the

heavy hitters problem.

If we are correct for a single i ∈ [n] with probability 1− δ, what is the

probability we are simultaneously correct for all i ∈ [n]?
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Bounding a union of events

Goal: Let Ai be the event that our estimate for fi is bad. In other

words

Ai := Event that |f̃i − fi | > ϵ∥f ∥2

We want to show that none of the Ai ’s happen. In other words, we

want to show:

Pr[A1 ∪ A2 ∪ . . . ∪ An] ≤
1

10
.

Need to bound the probability of a union of different events.

These events are not independent!!
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Actually the most important tool in probability

Lemma (Union Bound)

For any random events A1, . . . ,Ak :

Pr[A1 ∪ A2 ∪ . . . ∪ Ak ] ≤ Pr[A1] + Pr[A2] + . . .+ Pr[Ak ].

Proof by picture.
32



The Count-Mean Sketch

Let Ai := Event that |f̃i − fi | > ϵ∥f ∥2. We have

Pr[A1 ∪ A2 ∪ . . . ∪ An] ≤
n∑

i=1

Pr[Ai ] ≤ nδ

Lemma

The ”Count-Mean” Sketch uses space O( 1
ϵ2δ

) and outputs f̃i

such that for all i ∈ [n] we have:∣∣∣f̃i − fi

∣∣∣ ≤ ϵ∥f ∥2

with probability at least 1− δn.

Need to set δ < 1/(2n) to achieve > 1/2 success probability.

This results in Ω(n) space – which is useless!
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Better Concentration

After the break: Chernoff bounds + Exponential

concentration to achieve log(1/δ) dependency!
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Break

34



Beyond Chebyshev

Motivating question: Is Chebyshev’s Inequality tight?

68-95-99 rule for Gaussian bell-curve. X ∼ N(0, σ2)

Chebyshev’s Inequality:

Pr (|X − E[X ]| ≥ 1σ) ≤ 100%

Pr (|X − E[X ]| ≥ 2σ) ≤ 25%

Pr (|X − E[X ]| ≥ 3σ) ≤ 11%

Pr (|X − E[X ]| ≥ 4σ) ≤ 6%.

Truth:

Pr (|X − E[X ]| ≥ 1σ) ≈ 32%

Pr (|X − E[X ]| ≥ 2σ) ≈ 5%

Pr (|X − E[X ]| ≥ 3σ) ≈ 1%

Pr (|X − E[X ]| ≥ 4σ) ≈ .01%
35



Gaussian concentration

For X ∼ N (µ, σ2):

Pr[X = µ± x ] =
1

σ
√
2π

e−x2/2σ2

Lemma (Guassian Tail Bound)

For X ∼ N (µ, σ2):

Pr[|X − EX | ≥ k · σ] ≤ 2e−k2/2.

Standard y -scale. Logarithmic y -scale. 36
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Gaussian concentration

Takeaway: Gaussian random variables concentrate much tighter

around their expectation than variance alone predicts.

Why does this matter for algorithm design?
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Central Limit Theorem

Theorem (CLT – Informal)

Any sum of mutually independent, (identically distributed) r.v.’s

X1, . . . ,Xk with mean µ and finite variance σ2 converges to a

Gaussian r.v. with mean k · µ and variance k · σ2, as k →∞.

S =
n∑

i=1

Xi =⇒ N (k · µ, k · σ2).
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Independence

Recall:

Definition (Mutual Independence)

Random variables X1, . . . ,Xk are mutually independent if, for all

possible values v1, . . . , vk ,

Pr[X1 = v1, . . . ,Xk = vk ] = Pr[X1 = v1] · . . . · Pr[Xk = vk ]

Strictly stronger than pairwise independence.
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Exercise

If I flip a fair coin 100 times, lower bound the chance I get

between 30 and 70 heads?

For this problem, we will assume the CLT holds exactly for a sum of

independent random variables – i.e., that this sum looks exactly like a

Gaussian random variable.

Lemma (Guassian Tail Bound)

For X ∼ N (µ, σ2):

Pr[|X − EX | ≥ k · σ] ≤ 2e−k2/2.

40
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Quantitative versions of the CLT

Lots of different “versions” of exponential concentration

bounds

� Chernoff bound

� Bernstein bound

� Hoeffding bound

� Azumas Inequality, McDiarmid’s Inequality, Freedman’s

inequality, Khintshine’s inequality, Matrix Chernoff, Matrix

Bernstein, Matrix Azuma’s . . .

Different assumptions on random varibles (e.g. binary vs.

bounded), different forms (additive vs. multiplicative error), etc.

Wikipedia is your friend.
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Quantitative versions of the CLT

Theorem (Chernoff Bound)

Let X1,X2, . . . ,Xk be independent {0, 1}-valued random

variables and let pi = E[Xi ], where 0 < pi < 1. Then the sum

S =
∑k

i=1 Xi , which has mean µ =
∑k

i=1 pi , satisfies

Pr[S ≥ (1 + ϵ)µ] ≤ e
−ϵ2µ
2+ϵ .

and for 0 < ϵ < 1

Pr[S ≤ (1− ϵ)µ] ≤ e
−ϵ2µ

2 .

42

rajes
Pencil



Quantitative versions of the CLT

Theorem (Bernstein Inequality)

Let X1,X2, . . . ,Xk be independent random variables with each

Xi ∈ [−1, 1]. Let µi = E[Xi ] and σ2
i = Var[Xi ]. Let µ =

∑
i µi

and σ2 =
∑

i σ
2
i . Then, for k ≤

1
2σ, S =

∑
i Xi satisfies

Pr[|S − µ| > k · σ] ≤ 2 exp

(
−k2

4

)
.
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Quantitative versions of the CLT

Theorem (Hoeffding Inequality)

Let X1,X2, . . . ,Xk be independent random variables with each

Xi ∈ [ai , bi ]. Let µi = E[Xi ] and µ =
∑

i µi . Then, for any

α > 0, S =
∑

i Xi satisfies:

Pr[|S − µ| > α] ≤ 2 exp

(
− α2∑k

i=1(bi − ai )2

)
.
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Chernoff Bound application

Sample Application: Flip biased coin k times: i.e. the coin is heads

with probability b. As long as k ≥ O
(

log(1/δ)
ϵ2

)
,

Pr[|# heads− b · k | ≥ ϵk] ≤ δ

Setup: Let Xi = 1[i th flip is heads]. Want bound probability that∑k
i=1 Xi deviates from it’s expectation.

Corollary of Chernoff bound: Let S =
∑k

i=1 Xi and µ = E[S ]. For
0 < ∆ < 1,

Pr[|S − µ| ≥ ∆µ] ≤ 2e−∆2µ/3

45
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Chernoff Bound application

Sample Application: Flip biased coin k times: i.e. the coin is

heads with probability b. As long as k ≥ O
(
log(1/δ)

ϵ2

)
,

Pr[|# heads− b · k | ≥ ϵk] ≤ δ

Pay very little for higher probability – if you increase the number of

coin flips by 2x, δ goes from 1/10→ 1/100→ 1/10000

46
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Application: Median Trick

A even better trick than taking the mean:

Lemma

Let Z1,Z2, . . . ,Zt be random ”estimates” of some unknown

value R ∈ R, such that the Zi ’s are i.i.d. and such that

Pr[|Zi − R| < ϵ] ≥ 2
3 for each i ∈ [t], for any ϵ > 0.

Then, for any δ ∈ (0, 1), setting t = O(log 1
δ ), we have:

Pr
[∣∣mediani∈[t]Zi − R

∣∣ ≤ ϵ
]
≥ 1− δ

Proof: Define indicator variables Xi = 1 if |Zi − R| < ϵ. Then

X1, . . . ,Xt are independent ”coin flips” with mean b > 2/3. By

Chernoff,
∑

i Xi > (1− 1
10)

2
3 > 1

2 with probability 1− δ!
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Application: Median Trick

Proof: Define indicator variables Xi = 1 if |Zi − R| < ϵ. Then

X1, . . . ,Xt are independent ”coin flips” with mean b > 2/3. By

Chernoff,
∑

i Xi >
1
2 with probability 1− δ!

The Neat Observation: Given estimates Z1, . . . ,Zt of R, if

> 1/2 of the estimates satisfy |Zi − R| < ϵ, then we have∣∣mediani∈[t]Zi − R
∣∣ ≤ ϵ
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Application: Median Trick

Proof: Define indicator variables Xi = 1 if |Zi − R| < ϵ. Then

X1, . . . ,Xt are independent ”coin flips” with mean b > 2/3. By

Chernoff,
∑

i Xi >
1
2 with probability 1− δ!

The Neat Observation: Given estimates Z1, . . . ,Zt of R, if

> 1/2 of the estimates satisfy |Zi − R| < ϵ, then we have∣∣mediani∈[t]Zi − R
∣∣ ≤ ϵ
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Back to Count-Sketch

A Better Estimator: f̃i = medianj∈[t]σj(i)Aj [hj(i)]

50



Back to Count-Sketch

A Better Estimator: f̃i = medianj∈[t]σj(i)Aj [hj(i)]

Zj = σj(i)Aj [hj(i)] = fi +
∑
k ̸=i

1[h(k) = h(i)] · fk︸ ︷︷ ︸
error in frequency estimate

We showed E[error] = 0 and Var[error] < 1
B ∥f ∥

2
2, so by

Chebyshev’s, setting B = Θ(1/ϵ2) we have

Pr[|Zi − fi | < ϵ∥f ∥2] ≥
2

3

Exactly the same set-up as the earlier Lemma! Each estimate Zi is

correct independently with probability at least 2/3.
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Back to Count-Sketch

A Better Estimator: f̃i = medianj∈[t]σj(i)Aj [hj(i)]

Theorem

Fix any ϵ, δ ∈ (0, 1). Then for any i ∈ [n], the Count-Sketch

algorithm, using the estimate above, satisfies

Pr
[
|f̃i − fi | > ϵ∥f ∥2

]
≤ δ

Using space O( 1
ϵ2
log 1

δ ).

This was our goal probability!
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Back to Count-Sketch

Setting δ = 1/n2 in the earlier example, and applying the union

bound, we have:

Theorem

Fix any ϵ ∈ (0, 1). Then simultaneously for every i ∈ [n], the

Count-Sketch algorithm satisfies

Pr
[
|f̃i − fi | > ϵ∥f ∥2

]
≤ 1

n

Using space O( 1
ϵ2
log n).

Since each estimate is good, we can scan through all the estimates

{f̃i}i∈[n], and return the set S = {i : f̃i > 3ϵ∥f ∥1}.

This solves the 4ϵ-Heavy Hitters problem in O( 1
ϵ2
log n) space!
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Another Application Of The Union Bound:

Balls-in-Bins
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Load Balancing

Load balancing problem:

Suppose Google answers map search queries using servers

A1, . . . ,Aq. Given a query like “new york to rhode island”,

common practice is to choose a random hash function

h→ {1 . . . , q} and to route this query to server:

Ah(“new york to rhode island’)

Why use a hash function instead of just distributing requests

randomly?

Goal: Ensure that requests are distributed evenly, so no one server

gets loaded with too many requests. We want to avoid downtime

and slow responses to clients.
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Load Balancing

Suppose we have n servers and m requests, x1, . . . , xm. Let si be

the number of requests sent to server i ∈ {1, . . . , n} :

si =
m∑
j=1

1[h(xj) = i ].

Formally, our goal is to understand the value of maximum load on

any server, which can be written as the random variable:

S = max
i∈{1,...,n}

si .

55



Load Balancing

A good first step in any analysis of random variables is to first

think about expectations. If we have n servers and m requests, for

any i ∈ {1, . . . , n}:

E[si ] =
m∑
j=1

E [1[h(xj) = i ]] =
m

n
.

But it’s very unclear what the expectation of S = maxi∈{1,...,n} si

is... in particular, E[S ] ̸= maxi∈{1,...,n} E[si ].

Exercise: Convince yourself that for two random variables A and

B, E[max(A,B)] ̸= max(E[A],E[B]) even if those random variable

are independent.
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Balls-into-bins

Number of servers: To reduce notation and keep the math

simple, let’s assume that m = n. I.e., we have exactly the same

number of servers and requests.

Hash function: Continue to assume a fully (uniformly) random

hash function h.

Often called the “balls-into-bins” model.

E[si ] = expected number of balls per bin = m
n = 1. We would like

to prove a bound of the form:

Pr[max
i

si ≥ C ] ≤ 1

10
.

for as tight a value of C . I.e., something much better than C = n. 57



Application of Union Bound

We want to prove that:

Pr[max
i

si ≥ C ] = Pr[(s1 ≥ C ) ∪ (s2 ≥ C ) ∪ . . . ∪ (sn ≥ C )] ≤ 1

10
.

To do so, it suffices to prove that for all i :

Pr[si ≥ C ] ≤ 1

10n
.

Why? Because then by the union bound,

Pr[max
i

si ≥ C ] ≤
n∑

i=1

Pr[si ≥ C ] (Union bound)

≤
n∑

i=1

1

10n
=

1

10
.

n = number of balls and number of bins. si is number of balls in bin i .
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High probability bounds

Prove that for some C ,

Pr[si ≥ C ] ≤ 1

10n
.

This should look hard! We need to prove that si < C (i.e. the i th

bin has a small number of balls) with very high probability

(specifically 1− 1
10n ).

Markov’s inequality is too weak of a bound for this.

n = number of balls and number of bins. si is number of balls in bin i .

C = upper bound on maximum number of balls in any bin.
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Better Concentration:

Exercise: Show that Var(si ) ≤ 1.

� Using Chebyshev’s Inequaltity, we obtain

Pr[si > 10
√
n] ≤ 1

100n .

� Union bound gives Pr[maxi si ≥ 10
√
n] ≤ 1

100 .

� Chebyshev’s gives us a max load of O(
√
n), can we do better?
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Better Concentration:

Exercise: Show that Var(si ) ≤ 1.

� Using Chebyshev’s Inequaltity, we obtain

Pr[si > 10
√
n] ≤ 1

100n .

� Union bound gives Pr[maxi si ≥ 10
√
n] ≤ 1

100 .

� Chebyshev’s gives us a max load of O(
√
n), can we do better?

Exercise: si =
∑

j si ,j , where si ,j := j-th ball lands in i-th bin

Then si ,j ’s are i.i.d. indicator random variables. Use Chernoff

bound to show that Pr[si > 100 log(n)] ≤ 1
n2
.

� Chernoff gives a max load of O(log n)!

� Can actually do even better, and get a max load of

O(log n/ log log n)!
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A simple proof

Will show Pr[si > 6 log n
log log n ] < 1/n2.

Proof: Set C = 6 log n
log log n , then Pr[si > C ] =

∑
k≥C Pr[si = k], so

for any fixed k :

Pr[si = k] =
∑
k≥C

(
n

k

)
·
(
1

n

)k

≤
∑
k≥C

(en
k

)k (1

n

)k

≤
( e
k

)k
≤
(
log log n

log n

) 6 log n
log log n

≤
(

1√
log n

) 6 log n
log log n

≤ 2−
1
2
log(log n) 6 log n

log log n ≤ 1

n3

So Pr[si > C ] =
∑

k>C Pr[si = k] ≤ 1
n2
. This is actually tight!
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Takeaways

Techniques used that will appear again:

� Use exponential concentration inequalities (or direct

calculations) to get tight bounds on probability of an

individual random variable.

� Then apply the union bound to control the maximum of a

collection of such variables.

Next Class: The celebrated Johnson-Lindenstrauss Lemma and

High-Dimensional Geometry.
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