CS-GY 6763: Lecture 3
High Dimensional Geometry, the
Johnson-Lindenstrauss Lemma, MinHash

NYU Tandon School of Engineering, Prof. Rajesh Jayaram



Unifying themes of the course

How do we deal with data (vectors) in high dimensions?

e Distance-preserving dimensionality reduction (JL Lemma)

e Locality sensitive hashing (LSH) for nearest neighbor search.

e |terative methods for optimizing functions that depend on
many variables.

e SVD -+ low-rank approximation to find and visualize

low-dimensional structure.



High-dimensional space is not like low-dimensional space

Often visualize data and algorithms in 1,2, or 3 dimensions.

030

First part of lecture: Prove that high-dimensional space looks
very different from low-dimensional space. These images are

rarely very informative!



Sketching and dimensionality reduction

Second part of lecture: Ignore our own advice.

Learn about sketching, aka dimensionality reduction techniques
that seek to approximate high-dimensional vectors with much lower
dimensional vectors.

e Johnson-Lindenstrauss lemma for /> space.
e MinHash for binary vectors.
]Rd

First part of lecture should help you understand the potential and
limitations of these methods.



Orthogonal vectors

Recall the inner product between two d dimensional vectors:

d
vy =xTy=yTx=3"xyi
i=1

X Yy X
p 6 ¥

(x,y) = cos() - [Ix[l2 - [lyll2



Orthogonal vectors

What is the largest set of mutually orthogonal unit vectors
X1,..., X; in d-dimensional space? l.e. with inner product

Ixx;| =0 for all i, j.
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Orthogonal vectors

What is the largest set nearly orthogonal unit vectors x, .. ., X¢ in

d-dimensional space. l.e., with inner product |xx;| < € for all i, j.

t
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Orthogonal vectors

What is the largest set nearly orthogonal unit vectors xy, ..., X¢

in d-dimensional space. l.e., with inner product |x/x;| < ¢ for all /,

J.

1.d 2. 9(d) 3. ©(d?) 4. 20(9)



Orthogonal vectors

Claim: There is an exponential number (i.e., ~ 29) of nearly
orthogonal unit vectors in d dimensional space.

Proof strategy: Use the Probabilistic Method! For t = O(29),
define a random process which generates random vectors xi,...,X;

that are unlikely to have large inner product.

1. Claim that, with non-zero probability, |x,-TxJ-\ < eforalli,j.

2. Conclude that there must exists some set of t unit vectors
with all pairwise inner-products bounded by e.



Probabilistic method

Claim: There is an exponential number (i.e., ~ 29) of nearly
orthogonal unit vectors in d dimensional space.

Proof: Let x3,...,x; all have independent random entries, each
i . .y
set to j:\/g with equal probability.
° [Ixill2 =

o Elx/xj] =

e Var[x/xj] =

10



Probabilistic method

Let Z = x,.TxJ- = 27:1 C; where each C; is —&—% or —% with equal
probability.

Z is a sum of many i.i.d. random variables, so looks approximately

Gaussian. Roughly, we expect that:

Pr|lZ —EZ| > a-0] < O(e™™)

Note that we can transform to binary random variable:

where each B; is uniform in {0, 1}. 1



Chernoff bound

Theorem (Chernoff Bound)

Let X1, X, ..., Xk be independent {0, 1}-valued random
variables and let S = Zf-;l Xi. We have for any e <1 :

—e2E[s]

Pr{|S — E[S]| > €E[S]] < 23 .

Pr[|B - E[B]| > 1<

12



Probabilistic method

Formally, using a Chernoff bound:

Pr[|Z —EZ| > €] < 2 9/6

For any i,/ pair, Pr[jx/x;| <¢] >1— 9e—c2d/6
By a union bound:

t
For all i, pairs simultaneously, Pr[|x/x;| <¢] >1— ( ) . 2e=<d/6,

2

13



orthogonal vectors

Final result: In d-dimensional space, there are 20(¢*d) ynit vectors
with all pairwise inner products < e.

Corollary of proof: Random vectors tend to be far apart in

high-dimensions.
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curse of dimensionality

Curse of dimensionality: Suppose we want to use e.g. k-nearest
neighbors to learn a function or classify points in RY. If our data
distribution is truly random, we typically need an exponential
amount of data before seeing close points!

—

The existence of lower dimensional structure is our data is
often the only reason we can hope to learn.

ii5)



curse of dimensionality

Low-dimensional structure.
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or classification

For example, data lies on low-dimensional subspace, or does
so after transformation. Or function can be represented by a
restricted class of functions, like neural net with specific
structure.
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unit ball in high dimensions

Let By be the unit ball in d dimensions:
By={xeR?: x|l <1}.

What percentage of volume of By falls with € of its surface?

. Y
Volume of radius R ball is @y

o1 R4,

17



isoperimetric inequality

All but an O(ed) fraction of a unit ball’s volume is within € of its

surface.

1
2

Isoperimetric Inequality: the ball has the maximum surface
area/volume ratio of any shape.

oaQ

e If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

e ‘All points are outliers.’ 1



slices of the unit ball

What percentage of the volume of B, falls within € of its equator?

SI{XGBdZ‘XﬂSE}



slices of the unit ball

What percentage of the volume of B, falls within € of its equator?

O(e2d .
Answer: all but a % (%) fraction.

By symmetry, this is true for any equator:
St:{XEBd:XTtSG}. 20



bizarre shape of unit ball

@(ed))
@(ezd))

(11— % fraction of volume lies € close to surface.
1
2

1
2. (1-5 fraction of volume lies € close to any equator.

High-dimensional ball looks nothing like 2D ball! o1



concentration at equator

2
Claim: All but a 1%“?) fraction of the volume of the ball falls

within ¢ of its equator.

Equivalent: If we draw a point x randomly from the unit ball,
2
x| < € with probability > 1 — 19(°%)

22



concentration at equator

X
lIx]l2

Let w = . Because ||x]]2 <1,

Pr{jxi| <€ >Pr{jwi] <¢.

2
Claim: |wy| < e with probability > 1 — 1%¢°%)

our statement from the previous slide.

, which then proves

How can we generate w, which is a random vector taken from the

unit sphere (the surface of the ball)?

23



important fact in high dimensional geometry

Rotational Invariance of Gaussian distribution: Let g € R” be
a random Gaussian vector g ~ N(0, /,), i.e each entry drawn i.i.d.
from N(0,1). Then w = g/||g||2 is distributed uniformly on the

unit sphere.

24



important fact in high dimensional geometry

Rotational Invariance of Gaussian distribution: Let g € R” be
a random Gaussian vector g ~ N(0, /,), i.e each entry drawn i.i.d.
from N(0,1). Then w = g/||g||2 is distributed uniformly on the
unit sphere.

Proof: We can compute the PDF. For a single Gaussian:
p(x) = ce 2. For independent random variables X, Y with
PDF’s px(x), py(y), the joint pdf is given by the product
px,y(x,y) = px(x)py(y). Thus:

n

— _ly2 _1smn 2 _1 2

p(g) = p(x1, x2,...,Xxn) = H ce 3% ce”3 2im1 X — ce— 32
i=1

PDF p(g) only depends on norm |g]|3. 25



concentration at equator

Let g be a random Gaussian vector and w = g/||g||2.

o Ellgl3l =E[X 7, g7l =7, Varlgi] = d

o(d
e Prlligl2 < SE[gl2] < 1"
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concentration at equator

Let g be a random Gaussian vector and w = g/||g||2.
d d
o Elllgl3] = E[X - &7] = Xoi-y Varlgil = d
o(d
 Prllgl3 < HEelZ] < 3"

Theorem (Chernoff Bound)
Let X1, Xa, ..., Xk be independent {0, 1}-valued r.v.s. Set
S=%9.X;, u=E[S]. Then for0 < e < 1:

_e2
PrS<(1—e)p] <e 2.

Proof: X; =1 <= g? > 1. Then Pr[X; = 1] > .3, so
E[> %, Xi] > .3d. Can set ¢ = 1/2 above.

27



concentration at equator

For1— %e(d) fraction of vectors g, ||g|/2 > 1/d/10. Condition on

the event that we get a random vector in this set.

Pr{lwa| < ¢] = Pr [ywl| - \/dj10 < e¢d/1o}

> Pr (|| < ey/d/10]

19((6‘\/(1/10)2)
>1- -
- 2
Recall: w; = 8. So after conditioning, we have w; < —2L

|gll2

\/d/10° 28



bizarre shape of unit ball

@(ed))
@(ezd))

(11— % fraction of volume lies € close to surface.
1
2

1
2. (1-5 fraction of volume lies € close to any equator.

High-dimensional ball looks nothing like 2D ball! 29



dimensionality reduction

Despite the fact that low-dimensional space behaves nothing like
high-dimensional space, next we will demonstrate how to
compress high dimensional vectors to low dimensions, without

distorting distances between them too much.

In particular, a celebrated and simple method known as
Johnson-Lindenstrauss Random Projection achieves an optimal
compression of high-dimensional vectors into low-dimensional

space.

30



break



euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q,...,q, € RY there exists a linear
map M : RY — RK where k = O ('OG%”) such that for all i, ],

(1 —=e)llai —qjll2 < [[Ng; — Nqj2 < (1 + €)lla; — q;]f2.

31



euclidean dimensionality reduction

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qy, ...,q, € RY there exists a linear
map M : RY — RK where k = O ('OE%") such that for all i, ],

(1 —=e)llai —q;llz < [Ng; — Nq;l3 < (1 + ¢€)lla; — qj]f2-

because for small ¢, (1 +¢)2 =1+ O(e) and (1 —¢€)?> =1 — O(e).

32



euclidean dimensionality reduction

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q,...,q, € RY there exists a linear
map M : RY — RK where k = O ('06%”) such that for all i, ],

(1 - &)[Ma; — Nq;|l3 < [la; — q;l5 < (1 + €)||Ma; — Mq;]3.

because for small ¢, I%FF =1-0(¢) and t£- =1+ O(e).

33



sample application

k-means clustering: Give data points a1, ...,a, € R?, find
centers py, ..., p, € R to minimize:

n
Cost(fty, .-, py) = Z;j:nﬂiﬁk e — ai3
=

a, a

34



sample application

k-means clustering: Give data points a1, ...,a, € R?, find
centers gy, ..., i, € R to minimize:

n
Cost(fty, .-, py) = Z;j:nﬂi.h"k e — ai3
=

a, a

H4

H3
35



sample application

k-means clustering: Give data points a1, ...,a, € R?, find
centers py, ..., p, € R to minimize:

n

Cost(fty, .-, py) = Z;j:nﬂiﬁk e — ai3
=
a, a

Ha
H4



k-means clustering

NP hard to solve exactly, but there are many good approximation
algorithms. All depend at least linearly on the dimension d.

Approximation scheme: Find clusters Cp, ..., Cy for the
k=0 (IOE%”) dimension data set May, ..., Na,.

0o _
-05 05

0

Argue these clusters are near optimal for ai,...,a,.

37



k-means clustering

Equivalent formulation: Find clusters Cq,...,Cx C {1,...,n} to

minimize:

COSI'(Cl,...7 Z Z Hau aVH2

uveC

a, az

H4

an
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k-means clustering

Equivalent formulation: Find clusters Cq,...,Cx C {1,...,n} to
minimize:
k
COSt(Cl,...,Ck) Z Z Hau avH2
u,ve(;

a, a;
Z—""a

/ >,
i
—

39



k-means clustering

k
Cost(Cy,...,Ck) = Z Z lay — a3
Jj=1 u,veC;
k
Cost(Cy,...,Cp) = Z \cy |Na, — Ma, |3
j=1 u,veC;
Claim: For any clusters Cy, ..., Cg:

(1 — €)Cost(Cy, ..., Cx) < Cost(Cy,. .., Cx)
< (1+¢)Cost(Cy,. .., Ck)

40



k-means clustering

Suppose we use an approximation algorithm to find clusters
Bi, ..., Bk such that:

Cost(B, ..., Bx) < (1+ a)Cost

Then:
1

< (1+ a)(1 + O(e))Cost
< (1+ a)(1 + 0(e))(1 + ¢)Cost*
=1+ O(a + €)Cost’

COSt(Bl,...,Bk) éggt(Bl,...,Bk)

IN
[y

N

Cost™ = ming, ... ¢, Cost(Cy,..., Cy) and

@ COSt(Cl, R Ck) 41

.....

Cost = ming,

.....



euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q,...,q, € RY there exists a linear
map M : RY — RK where k = O ('OG%”) such that for all i, ],

(1 —=e)llai —qjll2 < [[Ng; — Nqj2 < (1 + €)lla; — q;]f2.

42



euclidean dimensionality reduction

Remarkably, 1 can be chosen completely at random!

One possible construction: Random Gaussian.

1
n; = ﬁN(O, 1)

The map I is oblivious to the data set. This stands in contrast
to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice — you can use random
{+1, —1} variables, sparse random matrices, pseudorandom [1.
Each with different advantages.

43



randomized jl constructions

Let M € R¥*9 be chosen so that each entry equals ﬁ/\/(o, 1).

. or each entry equals ﬁ 4+ 1 with equal probability.

>> Pi = randn(m,d); >> Pi = 2*randi(2,m,d)-3;
>> s = (1/sqrt(m))*Pixq; >> s = (1/sqrt(m))*Pixq;

A random orthogonal matrix also works. l.e. with MM7T = I, .
For this reason, the JL operation is often called a “random
projection”, even though it technically isn't a projection when
entries are i.i.d.

44



random projection

4
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Intuitively, close points will remain close after projection, and far

points will remain far.
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euclidean dimensionality reduction

Intermediate result:
Lemma (Distributional JL Lemma)

Let M € R¥*9 be chosen so that each entry equals ﬁN(O, 1),
where N'(0,1) denotes a standard Gaussian random variable.

If we choose k = O ("’gg/‘”), then for any vector x, with
probability (1 — 0):

(1= e)lxlz < M3 < (1 + ) 1x]13

46



jl from distributional jl

We have a set of vectors q1,...,q,. Fixi,j€1,...,n.
Let x = q; — q;. By linearity, Mx = MN(q; — q;) = Nq; — Nq;.
By the Distributional JL Lemma, with probability 1 — 9,

(1 =€)llai — qjll2 < |Ng; — Nqj2 < (1 + €)|la; — qj]|2-

Finally, set § = . Since there are < n? total i, j pairs, by a union

n?:

bound we have that with probability 9/10, the above will hold for
all i, j, as long as we compress to:

k=0 <'°g(1/(21/”2))> -0 <'°g”> dimensions. [

€ €2

47



proof of distributional jl

Want to argue that, with probability (1 — J),

(1= e)lIxlI3 < [Mx]3 < (1 + €)Ix[13

Some notation:

(1/vVk) ]
= (1/vk) i,
AT,

So each m; contains A/(0,1) entries. 48



proof of distributional jl

k k

2 k
Iz = Y = 3 ( Ttman)) = 3 (mion)?

i i i

Goal: Prove E|[Mx||3 = ||x||3.

49



proof of distributional jl

(miyxy =21 -x(1)+ 2 - x(2) + ... + Zy - x(d)

where each 71, ..., Z, is a standard normal A/(0,1) random
variable.

This implies that Z; - x(i) is a normal N(0, x(/)?) random variable.

Goal: Prove E|[Mx|2 = ||x|3. Established: E[|Mx|32 = E [(<7r,-,x>)2}

50



stable random variables

What type of random variable is (7;, x)?

Fact (Stability of Gaussian random variables)

N(Mlaa%) +N(M270—§) = N(:ul + /.,L2,0—% + O’%)

(mi,x) = N(0,x(1)%) + N(0,x(2)?) + ... + N(0,x(d)?)
= N(0, [|x]3)-

So E||Nx||3 =E [(<7r,-,x>)2} = ||x||3, as desired.

Bl



proof of distributional jl

Want to argue that, with probability (1 — ¢),

(1= )lxlz < M3 < (1 + ) Ix]13

L E[Nx|3 = [x]3.

2. Need to use a concentration bound.

k k
IMx))3 = Z (i, % ;Z (0, xI13))"

“Chi-squared random variable with k degrees of freedom.”

52



concentration of chi-squared random variables

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[|E[Z] — Z]| > €E[Z]] < De—ke?/8

Goal: Prove ||Mx||3 concentrates within 1 & ¢ of its expectation, which
equals ||x]3. 53



Putting together the pieces, we have just proven:
Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qy, . ..,q, € RY there exists a linear
map M : R — R¥ where k = O (%) such that for all i, j,

(1—¢)llai —qjll2 < INg; — Ngj|l2 < (1 + €)|la; — qj]|2.

54



Limits of Dimensionality Reduction

If high dimensional geometry is so different from low-dimensional
geometry, why is dimensionality reduction possible? Doesn't
Johnson-Lindenstrauss tell us that high-dimensional geometry can

be approximated in low dimensions?

Johnson-Lindenstrauss preserves only distances between the n
points qs, . ..,q, € R, not all points in RY!

55



Limits of Dimensionality Reduction

Hard case: 0 and mutually orthogonal unit vectors
X1,...,Xn €ERY (e.g. x; =(0,...,0,1,0,...,0) = ¢):

Ix; — x;||3 = 2 for all i, j.
From our result earlier, in O(log n/€?) dimensions, there exists
20(#log n/€®) > p it vectors {a;} that are e-nearly orthogonal, i.e.

<a,-, aj> <e.

O(log n/€?) is just enough dimensions to fit n e-nearly orthogonal
unit vectors.

56



And now: Linear Sketching



Linear Sketches

Definition

Given any high-dimensional vector f € R”, a linear sketch is a
matrix-vector product Sf € R, k < n, where S € R¥*" is called
a sketching matrix.

e Usually, S is a random matrix, who entries can be easily stored
(e.g., S is generated by 2-wise independent hash functions).

e Goal: from knowledge only of S and Sf, approximation some
function of f (i.e. ||f||3, find heavy hitters f; > €||f]|2, ect.)

e Benefits: S much smaller to store than f, can be maintain in

a stream!

57



Main Benefit of linear sketches:

Linear sketches are Linear!
Sx + Sy =S(x+y)

How is this useful for streaming? Suppose we have Sf stored, and
f gets an update (i,A) € [n] x Z.

Sf «+ Sf+

58



Main Benefit of linear sketches:

Linear Sketches are linear!
Sx+ Sy =S(x+y)

How is this useful for streaming? Suppose we have Sf stored, and
f gets an update (i,A) € [n] x Z.

Sf«<SfF+S;-A

Also very useful for distributed computation. Machines
ms, ..., mg have data xi, ..., xx € R". Each machine can sketch
Sx; € R¥, send to aggregator, which computes 3. Sx; = S(3_; x;).

59



Johnson Lindenstrauss for Streaming

JL-Lemma says that there exists a linear sketch S € R¥*" where
= % log(1/6), such that for any fixed f € R", we have
ISF]|5 = (1 & €)||||3 with prob 1 — 6. So:

Theorem

There is a turnstile streaming algorithm (in the random oracle
model) which estimates the £ norm ||f||3 of the frequency vector
to (1 £ €)-multiplicative error with probability > 1 — 0, using
O(ei2 log(1/0)) bits of space.

Recall: Random oracle model of streaming means we can store
random bits for free.
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Count-Sketch is a Linear Sketch

61



Linear Sketches
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Linear Sketches
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Linear Sketches
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Linear Sketches
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