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Unifying themes of the course

How do we deal with data (vectors) in high dimensions?

� Distance-preserving dimensionality reduction (JL Lemma)

� Locality sensitive hashing (LSH) for nearest neighbor search.

� Iterative methods for optimizing functions that depend on

many variables.

� SVD + low-rank approximation to find and visualize

low-dimensional structure.
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High-dimensional space is not like low-dimensional space

Often visualize data and algorithms in 1,2, or 3 dimensions.

First part of lecture: Prove that high-dimensional space looks

very different from low-dimensional space. These images are

rarely very informative!
3



Sketching and dimensionality reduction

Second part of lecture: Ignore our own advice.

Learn about sketching, aka dimensionality reduction techniques

that seek to approximate high-dimensional vectors with much lower

dimensional vectors.

� Johnson-Lindenstrauss lemma for ℓ2 space.

� MinHash for binary vectors.

First part of lecture should help you understand the potential and

limitations of these methods. 4



Orthogonal vectors

Recall the inner product between two d dimensional vectors:

⟨x , y⟩ = xT y = yT x =
d∑

i=1

xiyi

⟨x , y⟩ = cos(θ) · ∥x∥2 · ∥y∥2

5



Orthogonal vectors

What is the largest set of mutually orthogonal unit vectors

x1, . . . , xt in d-dimensional space? I.e. with inner product

|xTi xj | = 0 for all i , j .
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Orthogonal vectors

What is the largest set nearly orthogonal unit vectors x1, . . . , xt in

d-dimensional space. I.e., with inner product |xTi xj | ≤ ϵ for all i , j .
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Orthogonal vectors

What is the largest set nearly orthogonal unit vectors x1, . . . , xt
in d-dimensional space. I.e., with inner product |xTi xj | ≤ ϵ for all i ,

j .

1. d 2. Θ(d) 3. Θ(d2) 4. 2Θ(d)
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Orthogonal vectors

Claim: There is an exponential number (i.e., ∼ 2d) of nearly

orthogonal unit vectors in d dimensional space.

Proof strategy: Use the Probabilistic Method! For t = O(2d),

define a random process which generates random vectors x1, . . . , xt
that are unlikely to have large inner product.

1. Claim that, with non-zero probability, |xTi xj | ≤ ϵ for all i , j .

2. Conclude that there must exists some set of t unit vectors

with all pairwise inner-products bounded by ϵ.
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Probabilistic method

Claim: There is an exponential number (i.e., ∼ 2d) of nearly

orthogonal unit vectors in d dimensional space.

Proof: Let x1, . . . , xt all have independent random entries, each

set to ± 1√
d
with equal probability.

� ∥xi∥2 =

� E[xTi xj ] =

� Var[xTi xj ] =
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Probabilistic method

Let Z = xTi xj =
∑d

i=1 Ci where each Ci is +
1
d or − 1

d with equal

probability.

Z is a sum of many i.i.d. random variables, so looks approximately

Gaussian. Roughly, we expect that:

Pr[|Z − EZ | ≥ α · σ] ≤ O(e−α2
)

Note that we can transform to binary random variable:

Z =
d∑

i=1

Ci =
2

d

d∑
i=1

d

2
· Ci

=
2

d
·

(
−d

2
+

d∑
i=1

Bi

)
where each Bi is uniform in {0, 1}. 11



Chernoff bound

Theorem (Chernoff Bound)

Let X1,X2, . . . ,Xk be independent {0, 1}-valued random

variables and let S =
∑k

i=1 Xi . We have for any ϵ < 1 :

Pr[|S − E[S ]| ≥ ϵE[S ]] ≤ 2e
−ϵ2E[S]

3 .

Pr[|B − E[B]| ≥ ] ≤
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Probabilistic method

Formally, using a Chernoff bound:

Pr[|Z − EZ | ≥ ϵ] ≤ 2e−ϵ2d/6

For any i , j pair, Pr[|xTi xj | < ϵ] ≥ 1− 2e−ϵ2d/6.

By a union bound:

For all i , j pairs simultaneously, Pr[|xTi xj | < ϵ] ≥ 1−
(
t

2

)
· 2e−ϵ2d/6.
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orthogonal vectors

Final result: In d-dimensional space, there are 2θ(ϵ
2d) unit vectors

with all pairwise inner products ≤ ϵ.

Corollary of proof: Random vectors tend to be far apart in

high-dimensions.
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curse of dimensionality

Curse of dimensionality: Suppose we want to use e.g. k-nearest

neighbors to learn a function or classify points in Rd . If our data

distribution is truly random, we typically need an exponential

amount of data before seeing close points!

The existence of lower dimensional structure is our data is

often the only reason we can hope to learn.
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curse of dimensionality

Low-dimensional structure.

For example, data lies on low-dimensional subspace, or does

so after transformation. Or function can be represented by a

restricted class of functions, like neural net with specific

structure.
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unit ball in high dimensions

Let Bd be the unit ball in d dimensions:

Bd = {x ∈ Rd : ∥x∥2 ≤ 1}.

What percentage of volume of Bd falls with ϵ of its surface?

Volume of radius R ball is πd/2

(d/2)! · R
d .
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isoperimetric inequality

All but an 1
2

Θ(ϵd)
fraction of a unit ball’s volume is within ϵ of its

surface.

Isoperimetric Inequality: the ball has the maximum surface

area/volume ratio of any shape.

� If we randomly sample points from any high-dimensional

shape, nearly all will fall near its surface.

� ‘All points are outliers.’
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slices of the unit ball

What percentage of the volume of Bd falls within ϵ of its equator?

S = {x ∈ Bd : |x1| ≤ ϵ}

19



slices of the unit ball

What percentage of the volume of Bd falls within ϵ of its equator?

Answer: all but a 1
2

Θ(ϵ2d)
fraction.

By symmetry, this is true for any equator:

St = {x ∈ Bd : xT t ≤ ϵ}. 20



bizarre shape of unit ball

1. (1− 1
2

Θ(ϵd)
) fraction of volume lies ϵ close to surface.

2. (1− 1
2

Θ(ϵ2d)
) fraction of volume lies ϵ close to any equator.

High-dimensional ball looks nothing like 2D ball! 21



concentration at equator

Claim: All but a 1
2

Θ(ϵ2d)
fraction of the volume of the ball falls

within ϵ of its equator.

Equivalent: If we draw a point x randomly from the unit ball,

|x1| ≤ ϵ with probability ≥ 1− 1
2

Θ(ϵ2d)
.
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concentration at equator

Let w = x
∥x∥2 . Because ∥x∥2 ≤ 1,

Pr [|x1| ≤ ϵ] ≥ Pr [|w1| ≤ ϵ] .

Claim: |w1| ≤ ϵ with probability ≥ 1− 1
2

Θ(ϵ2d)
, which then proves

our statement from the previous slide.

How can we generate w, which is a random vector taken from the

unit sphere (the surface of the ball)?
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important fact in high dimensional geometry

Rotational Invariance of Gaussian distribution: Let g ∈ Rn be

a random Gaussian vector g ∼ N (0, In), i.e each entry drawn i.i.d.

from N (0, 1). Then w = g/∥g∥2 is distributed uniformly on the

unit sphere.
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important fact in high dimensional geometry

Rotational Invariance of Gaussian distribution: Let g ∈ Rn be

a random Gaussian vector g ∼ N (0, In), i.e each entry drawn i.i.d.

from N (0, 1). Then w = g/∥g∥2 is distributed uniformly on the

unit sphere.

Proof: We can compute the PDF. For a single Gaussian:

p(x) = ce−
1
2
x2 . For independent random variables X ,Y with

PDF’s pX (x), pY (y), the joint pdf is given by the product

pX ,Y (x , y) = pX (x)pY (y). Thus:

p(g⃗) = p(x1, x2, . . . , xn) =
n∏

i=1

ce−
1
2
x2i ce−

1
2

∑n
i=1 x

2
i = ce−

1
2
∥x∥22

PDF p(g⃗) only depends on norm ∥g∥22. 25



concentration at equator

Let g be a random Gaussian vector and w = g/∥g∥2.

� E[∥g∥22] = E[
∑d

i=1 g
2
i ] =

∑d
i=1 Var[gi ] = d

� Pr
[
|∥g∥22 ≤ 1

10E[∥g∥
2
2]
]
≤ 1

2

θ(d)
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concentration at equator

Let g be a random Gaussian vector and w = g/∥g∥2.

� E[∥g∥22] = E[
∑d

i=1 g
2
i ] =

∑d
i=1 Var[gi ] = d

� Pr
[
|∥g∥22 ≤ 1

10E[∥g∥
2
2]
]
≤ 1

2

θ(d)

Theorem (Chernoff Bound)

Let X1,X2, . . . ,Xk be independent {0, 1}-valued r.v.s. Set

S =
∑d

i=1 Xi , µ = E[S ]. Then for 0 < ϵ < 1:

Pr[S ≤ (1− ϵ)µ] ≤ e
−ϵ2µ

2 .

Proof: Xi = 1 ⇐⇒ g2
i ≥ 1. Then Pr[Xi = 1] > .3, so

E[
∑d

i=1 Xi ] > .3d . Can set ϵ = 1/2 above.
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concentration at equator

For 1− 1
2

θ(d)
fraction of vectors g, ∥g∥2 ≥

√
d/10. Condition on

the event that we get a random vector in this set.

Pr [|w1| ≤ ϵ] = Pr
[
|w1| ·

√
d/10 ≤ ϵ

√
d/10

]
≥ Pr

[
|g1| ≤ ϵ

√
d/10

]
≥ 1− 1

2

θ
(
(ϵ·
√

d/10)2
)

Recall: w1 =
g1

∥g∥2 . So after conditioning, we have w1 ≤ g1√
d/10

. 28



bizarre shape of unit ball

1. (1− 1
2

Θ(ϵd)
) fraction of volume lies ϵ close to surface.

2. (1− 1
2

Θ(ϵ2d)
) fraction of volume lies ϵ close to any equator.

High-dimensional ball looks nothing like 2D ball! 29



dimensionality reduction

Despite the fact that low-dimensional space behaves nothing like

high-dimensional space, next we will demonstrate how to

compress high dimensional vectors to low dimensions, without

distorting distances between them too much.

In particular, a celebrated and simple method known as

Johnson-Lindenstrauss Random Projection achieves an optimal

compression of high-dimensional vectors into low-dimensional

space.
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break
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euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q1, . . . ,qn ∈ Rd there exists a linear

map Π : Rd → Rk where k = O
(
log n
ϵ2

)
such that for all i , j ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1 + ϵ)∥qi − qj∥2.
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euclidean dimensionality reduction

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q1, . . . ,qn ∈ Rd there exists a linear

map Π : Rd → Rk where k = O
(
log n
ϵ2

)
such that for all i , j ,

(1− ϵ)∥qi − qj∥22 ≤ ∥Πqi −Πqj∥22 ≤ (1 + ϵ)∥qi − qj∥22.

because for small ϵ, (1 + ϵ)2 = 1 + O(ϵ) and (1− ϵ)2 = 1− O(ϵ).
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euclidean dimensionality reduction

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q1, . . . ,qn ∈ Rd there exists a linear

map Π : Rd → Rk where k = O
(
log n
ϵ2

)
such that for all i , j ,

(1− ϵ)∥Πqi −Πqj∥22 ≤ ∥qi − qj∥22 ≤ (1 + ϵ)∥Πqi −Πqj∥22.

because for small ϵ, 1
1+ϵ = 1− O(ϵ) and 1

1−ϵ = 1 + O(ϵ).

33



sample application

k-means clustering: Give data points a1, . . . , an ∈ Rd , find

centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑

i=1

min
j=1,...,k

∥µj − ai∥22
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sample application

k-means clustering: Give data points a1, . . . , an ∈ Rd , find

centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑

i=1

min
j=1,...,k

∥µj − ai∥22
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sample application

k-means clustering: Give data points a1, . . . , an ∈ Rd , find

centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑

i=1

min
j=1,...,k

∥µj − ai∥22

36



k-means clustering

NP hard to solve exactly, but there are many good approximation

algorithms. All depend at least linearly on the dimension d .

Approximation scheme: Find clusters C̃1, . . . , C̃k for the

k = O
(
log n
ϵ2

)
dimension data set Πa1, . . . ,Πan.

Argue these clusters are near optimal for a1, . . . , an.
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k-means clustering

Equivalent formulation: Find clusters C1, . . . ,Ck ⊆ {1, . . . , n} to
minimize:

Cost(C1, . . . ,Ck) =
k∑

j=1

1

2|Cj |
∑

u,v∈Cj

∥au − av∥22.
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k-means clustering

Equivalent formulation: Find clusters C1, . . . ,Ck ⊆ {1, . . . , n} to
minimize:

Cost(C1, . . . ,Ck) =
k∑

j=1

1

2|Cj |
∑

u,v∈Cj

∥au − av∥22.

Exercise: Prove this to your self.
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k-means clustering

Cost(C1, . . . ,Ck) =
k∑

j=1

1

2|Cj |
∑

u,v∈Cj

∥au − av∥22

C̃ost(C1, . . . ,Ck) =
k∑

j=1

1

2|Cj |
∑

u,v∈Cj

∥Πau − Πav∥22

Claim: For any clusters C1, . . . ,Ck :

(1− ϵ)Cost(C1, . . . ,Ck) ≤ C̃ost(C1, . . . ,Ck)

≤ (1 + ϵ)Cost(C1, . . . ,Ck)

40



k-means clustering

Suppose we use an approximation algorithm to find clusters

B1, . . . ,Bk such that:

C̃ost(B1, . . . ,Bk) ≤ (1 + α)C̃ost
∗

Then:

Cost(B1, . . . ,Bk) ≤
1

1− ϵ
C̃ost(B1, . . . ,Bk)

≤ (1 + α)(1 + O(ϵ))C̃ost
∗

≤ (1 + α)(1 + O(ϵ))(1 + ϵ)Cost∗

= 1 + O(α+ ϵ)Cost∗

Cost∗ = minC1,...,Ck
Cost(C1, . . . ,Ck) and

C̃ost
∗
= minC1,...,Ck

C̃ost(C1, . . . ,Ck) 41



euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q1, . . . ,qn ∈ Rd there exists a linear

map Π : Rd → Rk where k = O
(
log n
ϵ2

)
such that for all i , j ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1 + ϵ)∥qi − qj∥2.
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euclidean dimensionality reduction

Remarkably, Π can be chosen completely at random!

One possible construction: Random Gaussian.

Πi ,j =
1√
k
N (0, 1)

The map Π is oblivious to the data set. This stands in contrast

to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]

[Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random

{+1,−1} variables, sparse random matrices, pseudorandom Π.

Each with different advantages.
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randomized jl constructions

Let Π ∈ Rk×d be chosen so that each entry equals 1√
k
N (0, 1).

... or each entry equals 1√
k
± 1 with equal probability.

A random orthogonal matrix also works. I.e. with ΠΠT = Ik×k .

For this reason, the JL operation is often called a “random

projection”, even though it technically isn’t a projection when

entries are i.i.d.
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random projection

Intuitively, close points will remain close after projection, and far

points will remain far.
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euclidean dimensionality reduction

Intermediate result:

Lemma (Distributional JL Lemma)

Let Π ∈ Rk×d be chosen so that each entry equals 1√
k
N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

If we choose k = O
(
log(1/δ)

ϵ2

)
, then for any vector x, with

probability (1− δ):

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1 + ϵ)∥x∥22

Given this lemma, how do we prove the traditional

Johnson-Lindenstrauss lemma?
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jl from distributional jl

We have a set of vectors q1, . . . ,qn. Fix i , j ∈ 1, . . . , n.

Let x = qi − qj . By linearity, Πx = Π(qi − qj) = Πqi −Πqj .

By the Distributional JL Lemma, with probability 1− δ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1 + ϵ)∥qi − qj∥2.

Finally, set δ = 1
n2
. Since there are < n2 total i , j pairs, by a union

bound we have that with probability 9/10, the above will hold for

all i , j , as long as we compress to:

k = O

(
log(1/(1/n2))

ϵ2

)
= O

(
log n

ϵ2

)
dimensions.
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proof of distributional jl

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ |Πx∥22 ≤ (1 + ϵ)∥x∥22

Claim: E∥Πx∥22 = ∥x∥22.
Some notation:

So each πi contains N (0, 1) entries. 48



proof of distributional jl

∥Πx∥22 =
k∑
i

s(i)2 =
k∑
i

(
1√
k
⟨πi , x⟩

)2

=
1

k

k∑
i

(⟨πi , x⟩)2

E
[
∥Πx∥22

]
=

1

k

k∑
i

E
[
(⟨πi , x⟩)2

]
= E

[
(⟨πi , x⟩)2

]

Goal: Prove E∥Πx∥22 = ∥x∥22.
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proof of distributional jl

⟨πi , x⟩ = Z1 · x(1) + Z2 · x(2) + . . .+ Zd · x(d)

where each Z1, . . . ,Zd is a standard normal N (0, 1) random

variable.

This implies that Zi · x(i) is a normal N (0, x(i)2) random variable.

Goal: Prove E∥Πx∥22 = ∥x∥22. Established: E∥Πx∥22 = E
[
(⟨πi , x⟩)2

]
50



stable random variables

What type of random variable is ⟨πi , x⟩?

Fact (Stability of Gaussian random variables)

N (µ1, σ
2
1) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2)

⟨πi , x⟩ = N (0, x(1)2) +N (0, x(2)2) + . . .+N (0, x(d)2)

= N (0, ∥x∥22).

So E∥Πx∥22 = E
[
(⟨πi , x⟩)2

]
= ∥x∥22, as desired.
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proof of distributional jl

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1 + ϵ)∥x∥22

1. E∥Πx∥22 = ∥x∥22.
2. Need to use a concentration bound.

∥Πx∥22 =
1

k

k∑
i=1

(⟨πi , x⟩)2 =
1

k

k∑
i=1

(
N (0, ∥x∥22)

)2
“Chi-squared random variable with k degrees of freedom.”
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concentration of chi-squared random variables

Lemma

Let Z be a Chi-squared random variable with k degrees of

freedom.

Pr[|E[Z ]− Z | ≥ ϵE[Z ]] ≤ 2e−kϵ2/8

Goal: Prove ∥Πx∥22 concentrates within 1± ϵ of its expectation, which

equals ∥x∥22. 53



JL Lemma

Putting together the pieces, we have just proven:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q1, . . . ,qn ∈ Rd there exists a linear

map Π : Rd → Rk where k = O
(
log n
ϵ2

)
such that for all i , j ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1 + ϵ)∥qi − qj∥2.
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Limits of Dimensionality Reduction

If high dimensional geometry is so different from low-dimensional

geometry, why is dimensionality reduction possible? Doesn’t

Johnson-Lindenstrauss tell us that high-dimensional geometry can

be approximated in low dimensions?

Johnson-Lindenstrauss preserves only distances between the n

points q1, . . . ,qn ∈ Rd , not all points in Rd !
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Limits of Dimensionality Reduction

Hard case: 0⃗ and mutually orthogonal unit vectors

x1, . . . , xn ∈ Rd (e.g. x i = (0, . . . , 0, 1, 0, . . . , 0) = ei ):

∥xi − xj∥22 = 2 for all i , j .

From our result earlier, in O(log n/ϵ2) dimensions, there exists

2O(ϵ2·log n/ϵ2) ≥ n unit vectors {ai} that are ϵ-nearly orthogonal, i.e.

⟨ai , aj⟩ ≤ ϵ.

O(log n/ϵ2) is just enough dimensions to fit n ϵ-nearly orthogonal

unit vectors.
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And now: Linear Sketching
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Linear Sketches

Definition

Given any high-dimensional vector f ∈ Rn, a linear sketch is a

matrix-vector product Sf ∈ Rk , k ≪ n, where S ∈ Rk×n is called

a sketching matrix.

� Usually, S is a random matrix, who entries can be easily stored

(e.g., S is generated by 2-wise independent hash functions).

� Goal: from knowledge only of S and Sf , approximation some

function of f (i.e. ∥f ∥22, find heavy hitters fi > ϵ∥f ∥2, ect.)
� Benefits: S much smaller to store than f , can be maintain in

a stream!

We have seen these before: Count-Min, Count-Sketch,

Johnson-Lindenstrauss...
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Main Benefit of linear sketches:

Linear sketches are Linear!

Sx + Sy = S(x + y)

How is this useful for streaming? Suppose we have Sf stored, and

f gets an update (i ,∆) ∈ [n]× Z.

Sf ← Sf+

58



Main Benefit of linear sketches:

Linear Sketches are linear!

Sx + Sy = S(x + y)

How is this useful for streaming? Suppose we have Sf stored, and

f gets an update (i ,∆) ∈ [n]× Z.

Sf ← Sf + Si ·∆

Also very useful for distributed computation. Machines

m1, . . . ,mk have data x1, ..., xk ∈ Rn. Each machine can sketch

Sxi ∈ Rk , send to aggregator, which computes
∑

i Sxi = S(
∑

i xi ).
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Johnson Lindenstrauss for Streaming

JL-Lemma says that there exists a linear sketch S ∈ Rk×n, where

k = 1
ϵ2
log(1/δ), such that for any fixed f ∈ Rn, we have

∥Sf ∥22 = (1± ϵ)∥f ∥22 with prob 1− δ. So:

Theorem

There is a turnstile streaming algorithm (in the random oracle

model) which estimates the ℓ2 norm ∥f ∥22 of the frequency vector

to (1± ϵ)-multiplicative error with probability > 1− δ, using

O( 1
ϵ2
log(1/δ)) bits of space.

Recall: Random oracle model of streaming means we can store

random bits for free.
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Count-Sketch is a Linear Sketch
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Linear Sketches
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Linear Sketches
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Linear Sketches
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Linear Sketches
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