
CS-GY 6763: Lecture 4

Linear Sketching, Sparse Recovery, and L0

Sampling

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

1

Euclidean Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

For any two data points y,q ∈ Rd there exists a linear map

Π : Rd → Rk where k = O
(
log(1/δ)

ϵ2

)
such that with probability

1− δ,

(1− ϵ)∥q− y∥2 ≤ ∥Πq−Πy∥2 ≤ (1 + ϵ)∥q− y∥2.

2

Euclidean Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q1, . . . ,qn ∈ Rd there exists a linear

map Π : Rd → Rk where k = O
(
log(n/δ)

ϵ2

)
such that with

probability (1− δ), for all i , j ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1 + ϵ)∥qi − qj∥2.

Extends to approximating all pairwise distances in a set of n

vectors via a union bound.

3

JL Application: Nearest Neighbor Search

Definition (Nearest Neighbor Problem)

Given a dataset D = {p1, p2, . . . , pn} ∈ Rd of n points in

high-dimensional space, preprocess D so that one can quickly

answer the following queries:

1. Insert a point p into D
2. Delete a point p from D
3. Given a query point q ∈ Rd , return a point p ∈ D with

∥p − q∥2 ≤ (1 + ϵ)minp′∈D ∥q − p′∥2

4

JL Application: Nearest Neighbor Search

Dataset: D = {p1, p2, . . . , pn} ∈ Rd , query point q ∈ Rd , want to

find p ∈ D with ∥p − q∥2 ≤ (1 + ϵ)minp′∈D ∥q − p′∥2.

First Try: Linear (Brute-force) scan: O(d · n) time per query.

Better with JL:

� Set p̃i = Πpi and q̃ = Πq where Π ∈ Rk×n is a random JL

matrix with k = O(log n
ϵ2

).

� Return p = argminpi ∥q̃ − p̃i∥2.

Larger O(dn log n
ϵ2

) preprocessing time, but each query is now faster

at time O(n log n
ϵ2

). After k queries, the total runtime is better!

How many queries can we answer correctly with probability 9/10?

5

Linear Sketches

Definition

Given any high-dimensional vector f ∈ Rn, a linear sketch is a

matrix-vector product Sf ∈ Rk , k ≪ n, where S ∈ Rk×n is called

a sketching matrix.

� Usually, S is a random matrix, who entries can be easily stored

(e.g., S is generated by 2-wise independent hash functions).

� Goal: from knowledge only of S and Sf , approximation some

function of f (i.e. ∥f ∥22, find heavy hitters fi > ϵ∥f ∥2, ect.)
� Benefits: S much smaller to store than f , can be maintain in

a stream!

We have seen these before: Count-Min, Count-Sketch,

Johnson-Lindenstrauss...

6

Main Benefit of linear sketches:

Linear sketches are Linear!

Sx + Sy = S(x + y)

How is this useful for streaming? Suppose we have Sf stored, and

f gets an update (i ,∆) ∈ [n]× Z.

Sf ← Sf+

7

rajes
Pencil

Main Benefit of linear sketches:

Linear Sketches are linear!

Sx + Sy = S(x + y)

How is this useful for streaming? Suppose we have Sf stored, and

f gets an update (i ,∆) ∈ [n]× Z.

Sf ← Sf + Si ·∆

Also very useful for distributed computation. Machines

m1, . . . ,mk have data x1, ..., xk ∈ Rn. Each machine can sketch

Sxi ∈ Rk , send to aggregator, which computes
∑

i Sxi = S(
∑

i xi).

8

Johnson Lindenstrauss for Streaming

JL-Lemma says that there exists a linear sketch S ∈ Rk×n, where

k = 1
ϵ2
log(1/δ), such that for any fixed f ∈ Rn, we have

∥Sf ∥22 = (1± ϵ)∥f ∥22 with prob 1− δ. So:

Theorem

There is a turnstile streaming algorithm (in the random oracle

model) which estimates the ℓ2 norm ∥f ∥22 of the frequency vector

to (1± ϵ)-multiplicative error with probability > 1− δ, using

O(1
ϵ2
log(1/δ)) bits of space.

Recall: Random oracle model of streaming means we can store

random bits for free.

9

Recall: Count-Sketch

� Choose random hash functions h1, h2, . . . , ht : [n]→ [B], and

σ1, σ2, . . . , σt : [n]→ {1,−1}, where t = O(log 1/δ) and

B = O(1/ϵ2).
� For each update ℓ = 1, . . . ,m

� Given update (iℓ,∆ℓ), for each j = 1, 2, . . . , t set

Aj [hj(iℓ)] = A[h(iℓ)] + σ(iℓ) ·∆ℓ

10

Recall: Count-Sketch

We can stack A1, . . . ,At ∈ RB together to form a vector A ∈ RBt ,

such that A = S · f for some sketching matrix S.

11

rajes
Pencil

Count-Sketch is a Linear Sketch

Can define the count-sketch sketching matrix S ∈ RtB×n via

stacking t identically distributed sketching matrices S1,S2, . . . ,St

Si =


0 1 0 . . . 0 0 0

0 0 −1 . . . 0 −1 0

0 0 0 . . . 0 0 1
...

...
...

. . .
...

...
...

−1 0 0 . . . 1 0 0


Each column Si

j of S
i has one non-zero entry, placed in a random

row hi (j), and given a random sign σi (j).

12

rajes
Pencil

Count-Sketch is a Linear Sketch

Can define the count-sketch sketching matrix S ∈ RtB×n via

stacking t identically distributed sketching matrices S1,S2, . . . ,St

S =


S1

S2

S3

...

St


Then A = S · f , so count-sketch is linear, where S has O(log 1/δ)

non-zero entries per column. This is sparse!

13

Count-Sketch is a Linear Sketch

14

Detour on k-wise independent hashing

14

Note on Hash Functions

We often assume we have truly random hash functions h, can we

weaken this?

Definition (Universal hash function)

A random hash function h : U → {1, . . . ,B} is universal if, for
any fixed x , y ∈ U ,

Pr[h(x) = h(y)] ≤ 1

B
.

Claim: A uniformly random hash-function is universal.

Efficient alternative: Let p be a prime number between |U| and
2|U|. Let a, b be random numbers in {0, . . . , p} with a ̸= 0.

h(x) = [a · x + b (mod p)] (mod B)

is universal. Note we only need to store a, b! 15

rajes
Pencil

Note on Hash Functions

Another definition you might come across:

Definition (Pairwise independent hash function)

A random hash function h : U → {1, . . . ,B} is pairwise
independent if, for any fixed x , y ∈ U , i , j ∈ {1 . . . ,B},

Pr[h(x) = i ∩ h(y) = j] =
1

B2
.

We can naturally extended to k-wise independence for k > 2,

which is strictly stronger. Need degree k polynomials, which

requires O(k) space to store coefficients.

16

Note on Hash Functions

Extension to k-wise independence

Definition (k-wise independent hash function)

A random hash function h : U → {1, . . . ,B} is k-wise
independent for k ≥ 2 if, for any fixed x1, x2, . . . , xk ∈ U and

i1, . . . , ik ∈ {1 . . . ,B},

Pr[h(x1) = i1 ∩ h(x2) = i2 ∩ · · · ∩ h(xk) = ik] =
1

Bk
.

k-wise independence implies k − 1-wise independence for all

k ′ < k, can you see why?

17

rajes
Pencil

rajes
Pencil

Note on Hash Functions

k-wise independence implies k − 1-wise independence for all

k ′ < k, can you see why?

Proof:

18

rajes
Pencil

rajes
Pencil

Note on Hash Functions

Definition (k-wise independent hash function)

A random hash function h : U → {1, . . . ,B} is k-wise
independent for k ≥ 2 if, for any fixed x1, x2, . . . , xk ∈ U and

i1, . . . , ik ∈ {1 . . . ,B},

Pr[h(x1) = i1 ∩ h(x2) = i2 ∩ · · · ∩ h(xk) = ik] =
1

Bk
.

Facts: if h : U → {1, . . . ,B} is k-wise independent, then for any

fixed x1, x2, . . . , xk ∈ U we have

E[h(x1)h(x2) · · · h(xk) = E[h(x1)]E[h(x2)] · · ·E[h(xl)]

More generally, for any powers p1, p2, . . . , pk ≥ 0:

E[h(x1)p1h(x2)p2 · · · h(xk)pk = E[h(x1)p1]E[h(x2)p2] · · ·E[h(xk)pk)]

19

Revisiting Count-Sketch with pairwise independence.

� Choose random 2-wise independent hash functions

h1, h2, . . . , ht : [n]→ [B], and σ1, σ2, . . . , σt : [n]→ {1,−1},
where t = O(log 1/δ) and B = O(1/ϵ2).

� For each update ℓ = 1, . . . ,m
� Given update (iℓ,∆ℓ), for each j = 1, 2, . . . , t set

Aj [hj(iℓ)] = A[h(iℓ)] + σ(iℓ) ·∆ℓ

20

Revisiting Count-Sketch with pairwise independence.

When estimating f̃i for fi , for the error in level s ∈ [t] we have

E

 ∑
j ,hs(j)=hs(i)

σs(j)fj]

 = 0

Recall, variance is linear so long as the variables are pairwise

independent!

Var

 ∑
j ,hs(j)=hs(i)

σs(j)fj]

 =
∑

j ,hs(j)=hs(i)

Var(σs(j)fj) ≤
∥f ∥2
B

Where we used pairwise independence: Pr [hs(j) = hs(i)] = 1/B.

Worth going back to check that everything goes through from here

with limited independence.
21

rajes
Pencil

Back to Linear Sketching

21

AMS Sketch, alternative to JL

Let h1, . . . , hk : [n]→ {−1, 1} be 4-wise independent hash

functions, and let S ∈ Rk×n be a random matrix define by

Si ,j = hi (j). Note S can be stored in O(k) words of space.

Theorem (Alon, Matias, Szegedy ’96)

If S is the random matrix from above, with k = O(1
ϵ2
), then for

any fixed x ∈ Rn with probability at least 9/10 we have

∥ 1√
k
Sx∥22 = (1± ϵ)∥x∥22

22

rajes
Pencil

AMS Sketch, alternative to JL

Let h1, . . . , hk : [n]→ {−1, 1} be 4-wise independent hash

functions, and let S ∈ Rk×n be a random matrix define by

Si ,j = hi (j). Note S can be stored in O(k) words of space.

Theorem (Alon, Matias, Szegedy ’96)

If S is the random matrix from above, with k = O(1
ϵ2
), then for

any fixed x ∈ Rn with probability at least 9/10 we have

∥ 1√
k
Sx∥22 = (1± ϵ)∥x∥22

This is perhaps the seminal paper in streaming algorithms. The

authors won the Gödel prize for this work!

23

AMS Sketch: another linear sketch!

Let h1, . . . , hk : [n]→ {−1, 1} be 4-wise independent hash

functions, and Si ,j = hi (j).

Proof: Lets look at a single entry of (Sx)1 = ⟨S1, x⟩.

E
[
⟨S1, x⟩2

]
=
∑
i

E

(∑
i

xih1(i)

)2


=
∑
i

E[x2i h21(i)] +
∑
i ̸=j

E[xih1(i)xjh1(j)]

= ∥x∥22

So E[∥k−1/2Sx∥22] = k · (1/k)∥x∥22 = ∥x∥22.

24

rajes
Pencil

AMS Sketch: another linear sketch!

Var[⟨S1, x⟩2] ≤ E

∑
i ,j

xixjh(i)h(j)

2− ∥x∥42
≤ E[(

∑
i ,j

xixjh(i)h(j))
2]−

∑
i ,j

x2i x
2
j

=
∑

i ̸=j , or
t ̸=ℓ

E[xixjxtxℓh(i)h(j)h(t)h(ℓ)]

=
∑
i ̸=j
t ̸=ℓ

E[xixjxtxℓh(i)h(j)h(t)h(ℓ)]

=
∑
i ̸=t

x2i x
2
t ≤ (

∑
i

x2i)
2 = ∥x∥42

25

rajes
Pencil

AMS Sketch: another linear sketch!

Let h1, . . . , hk : [n]→ {−1, 1} be 4-wise independent hash

functions, k = 10/ϵ2 and Si ,j = hi (j).

Wrapping up: E[∥k−1/2Sx∥22] = 0, and

Var(∥k−1/2Sx∥22) =
1

k

k∑
i=1

Var(⟨S1, x⟩2) ≤
1

k
∥x∥42

By Chebyshev’s Inequality:

Pr
[∣∣∣∥k−1/2Sx∥22 − ∥x∥22

∣∣∣ ≥ ϵ∥x∥22
]
≤ 1

ϵ2∥x∥42
· ∥x∥

4
2

k
≤ 1/100

26

rajes
Pencil

AMS Sketch, Summary

Let h1, . . . , hk : [n]→ {−1, 1} be 4-wise independent hash

functions, and let S ∈ Rk×n be a random matrix define by

Si ,j = hi (j). Note S can be stored in O(k) words of space.

Theorem (Alon, Matias, Szegedy ’96)

If S is the random matrix from above, with k = O(1
ϵ2
), then for

any fixed x ∈ Rn with probability at least 9/10 we have

∥ 1√
k
Sx∥22 = (1± ϵ)∥x∥22

Note that if we used fully random hash functions h1, . . . , hk , we

could have used Chernoff bounds instead of Chebyshev inequality

(why?), to obtain failure probability δ using k = O(log(1/δ)/ϵ2).

This gives an alternative to Gaussian matrices for JL!
27

Linear Sketching and Turnstile Streaming

An important observation researchers made after 20 years of

designing turnstile streaming algorithms: almost every known

turnstile streaming algorithm was a linear sketch!

It turns out, there is a formal equivalence, under some

(admittedly non-trivial) assumptions.

Turnstile Streaming Algorithms Might as Well Be Linear Sketches,

Yi Li, Huy L. Nguyên, David P. Woodruff (STOC 14).

You will not need to know the details of this, or use this

connecting, but it is useful to keep in mind, and a beautiful result!

All turnstile streaming algorithms in this course will be linear sketches

(almost certainly).
28

Sampling via Linear Sketches

28

L0 Sampling

In the HW, we saw how to estimate the number of non-zero

elements ∥f ∥0 = |{i ∈ [n]|fi ̸= 0}| in insertion-only streams.

Algorithm for Distinct Elements Estimation

1. Select a uniformly random hash function h : [n]→ [0, 1].

2. For each update (ai ,∆) ∈ [n] in the stream, compute

h(ai) ∈ [0, 1], and store it if it is one of the the

k-smallest unique hash values seen so far.

3. At the end of the stream, let h1 < h2 < · · · < hk ∈ [0, 1]

be the k-smallest hash values seen during the stream

(i.e., the k-smallest real numbers in the set

{h(i) : i ∈ [n], fi ̸= 0}), which the algorithm now has

stored. Output the estimator R = 1
hk
· k .

29

L0 Sampling

In the HW, we saw how to estimate the number of non-zero

elements ∥f ∥0 = |{i ∈ [n]|fi ̸= 0}| in insertion-only streams.

What if we just wanted to sample a non-zero fi?

Algorithm for sampling non-zero coordinates

1. Select a uniformly random hash function h : [n]→ [0, 1].

2. For each update (ai ,∆) ∈ [n] in the stream, compute

h(ai) ∈ [0, 1], and store the tuple (ai , h(ai)) it if it’s the

smallest hash value seen so far.

3. At the end of the stream, let (ai , h(ai)) be the stored

tuple, and output the sample ai ∈ [n].

30

Algorithm for sampling non-zero coordinates

1. Select a uniformly random hash function h : [n]→ [0, 1].

2. For each update (ai ,∆) ∈ [n] in the stream, compute

h(ai) ∈ [0, 1], and store the tuple (ai , h(ai)) it if it’s the

smallest hash value seen so far.

3. At the end of the stream, let (ai , h(ai)) be the stored

tuple, and output the sample ai ∈ [n].

This gives a uniform sample from {i ∈ [n] | fi ̸= 0}.

Proof: each h(ai) equally likely to be the smallest hash

31

Algorithm for sampling non-zero coordinates

1. Select a uniformly random hash function h : [n]→ [0, 1].

2. For each update (ai ,∆) ∈ [n] in the stream, compute

h(ai) ∈ [0, 1], and store the tuple (ai , h(ai)) it if it’s the

smallest hash value seen so far.

3. At the end of the stream, let (ai , h(ai)) be the stored

tuple, and output the sample ai ∈ [n].

This gives a uniform sample from {i ∈ [n] | fi ̸= 0}.

Proof: each h(ai) equally likely to be the smallest hash

What happens if there are deletions in the stream? Also, is this

sketch is linear?

32

L0 Sampling via Linear Sketches

Key issue with min-hash sampling: many points may be deleted

after inserted – cannot keep track of the smallest hash.

Solution: We follow a two-level approach:

1. First, we guess the value of ∥f ∥0 up to a factor of 2 error, by

making the guesses r = 1, 2, 4, 8, . . . , n.

2. Next, for each guess r , we try to sample a uniformly random

coordinate of ∥f ∥0 by subsampling the coordinates of f at

rate 1
r .

3. If our guess was correct, and 1
4∥f ∥0 ≤ r < 1

2∥f ∥0, then we

expect at most O(1)-coordinates to survive the sampling!

This approach of ”guessing” an unknown value to a factor of 2 in

geometric intervals is extreemly common in algorithm design!

33

Sparse Recovery

Suppose we had the right guess of r , with 1
4∥f ∥0 ≤ r < 1

2∥f ∥0.
Once we subsample coordinates at rate 1/r , how do we find the

O(1)-expected coordinates that survive?

Warning! Cannot just try to store them as they arrive!

Example: Suppose we had ∥f ∥0 = 1 at the end of the stream,

which consisted of first inserting +1 to each coordiante, so

f = (1, 1, . . . , 1), and then deleting all 1′s except one random

index fi , so f = (0, 0, . . . , 0, 1, 0, . . . , 0) at the end of the stream

If we sampled items at rate 1/∥f ∥0 = 1, what would our space be?

34

Sparse Recovery

To solve this task, we introduce the central notation of spare

recovery.

Definition

Given a unknown vector f ∈ Rn with at most k non-zero

coordinates (i.e. ∥f ∥0 ≤ k), design a randomized linear sketch

S ∈ Rt×n such that from Sf ,S, one can exactly recover f .

In the streaming version of the problem, the entries of f are seen

in a (turnstile) stream, and we are not restricted to using a linear

sketch.

� Could take S = In ∈ Rn×n, but this is very inefficient.

Since linear sketches imply streaming algorithms, useful to start by

thinking about it from a streaming perspective.

35

Sparse Recovery

Definition

Given a unknown vector f ∈ Rn with at most k non-zero

coordinates (i.e. ∥f ∥0 ≤ k), design a turnstile streaming

algorithm to exactly recover f .

Simplification: Suppose we got two passes* over the stream. In

other words, we see the stream of updates

(i1,∆1), (i2,∆2), . . . , (im,∆m) twice, in the same order. Also

assume that f has non-negative coordinates.

*This is actually an important streaming model: the multi-pass streaming

model

36

Sparse Recovery: A two pass algorithm

f ∈ Rn a non-negative k-sparse vector, given by a stream

(i1,∆1), . . . , (im,∆m) which we see twice.

Solution #1: Think about the covid testing scheme from the HW.

Can you modify the first scheme from there to design a two-pass

streaming algorithm using space O(
√
kn)?

37

rajes
Pencil

Sparse Recovery: A two pass algorithm

Pass 1:

1. Partition the coordinates into C = O(
√
kn) buckets of equal

size. Keep a counter cj for each j ∈ [C]. Let b(i) ∈ [C] be the

bucket containing coordinate i ∈ [n].

2. Each update (i ,∆), update the counter cb(i) ← cb(i) +∆.

Pass 2:

1. Let S ⊂ [C] be the set of non-zero counter (cj ̸= 0) from the

first pass. Note that |S | ≤ k . Store the exact value of all

coordinates fi with b(i) ∈ S .

2. At the end of the second pass, we will have recovered all k

non-zero coordinates of f exactly. Why?

38

rajes
Pencil

Sparse Recovery: A two pass algorithm

Space Complexity: First pass, we store C = O(
√
kn) counters, so

O(
√
kn) space. Second pass, we “retest” the whole set of

coordinates that belong a bucket j with cj ̸= 0. Since each bucket

contains n/C = O(
√

n/k) coordinates, we store at most

kn/c = O(
√
nk) coordinates on the second pass.

Correctness:

39

Sparse Recovery: A two pass algorithm

Space Complexity: First pass, we store C = O(
√
kn) counters, so

O(
√
kn) space. Second pass, we “retest” the whole set of

coordinates that belong a bucket j with cj ̸= 0. Since each bucket

contains n/C = O(
√

n/k) coordinates, we store at most

kn/c = O(
√
nk) coordinates on the second pass.

Correctness: Since fi ≥ 0 for all i ∈ [n], we have cj > 0 at the end

of the stream for every bucket j containing a non-zero coordinate.

For small k , this is significantly better than O(n) space!

40

Sparse Recovery

Definition

Given a unknown vector f ∈ Rn with at most k non-zero

coordinates (i.e. ∥f ∥0 ≤ k), design a turnstile streaming

algorithm to exactly recover f .

We just showed that there is a two-pass streaming algorithm using

O(
√
kn) space, so long as f has non-negative coordinates.

Removing the assumptions: Let’s now try to adapt the second

part of the Covid Testing problem to obtain a single pass algorithm

for any f !

41

Sparse Recovery

Definition

Given a unknown vector f ∈ Rn with at most k non-zero

coordinates (i.e. ∥f ∥0 ≤ k), design a turnstile streaming

algorithm to exactly recover f .

Intuitively: What did the second Covid testing scheme do...split

[n] into O(k) buckets, test everyone in a bucket, and repeat

O(log n) times.

� For covid testing, we wanted negative patients not to collide

with positive patients at least once.

� For k-sparse recovery, we just need positive patients not to

collide with other positive patients most of the time, so we

can tell their values apart.

� Does this sound like another algorithm we’ve seen?
42

Sparse Recovery

We proved in the homework:

Theorem (Count-Sketch with tail error)

There is a linear sketch S ∈ Rt×n with t = O(B · log n), such
that, given S · f and S we can produce an estimate f̃ ∈ Rn, such

that with probability 1− 1/n for every i ∈ [n] we have:∣∣∣f̃i − fi

∣∣∣ ≤ 1√
B
∥f−B∥2

Setting B = k , for the k-sparse recovery problem ∥f−k∥2 =

43

rajes
Pencil

Sparse Recovery

We proved in the homework:

Theorem (Count-Sketch with tail error)

There is a linear sketch S ∈ Rt×n with t = O(B · log n), such
that, given S · f and S we can produce an estimate f̃ ∈ Rn, such

that with probability 1− 1/n for every i ∈ [n] we have:∣∣∣f̃i − fi

∣∣∣ ≤ 1√
B
∥f−B∥2

Setting B = k , for the k-sparse recovery problem ∥f−k∥2 =

� In O(k log n) words of space, we recover a k-sparse vector f

exactly from S with probability 1− δ0!

44

rajes
Pencil

Back to L0 Sampling: The Full Algorithm

Set k = 100 log n.

1. For each i = 1, 2, . . . , log n:

� Sample each j ∈ [n] independently with probability 2j/n (can

be done via truly random hash function h : [n]→ [n/2j]). Let

Ai ⊂ [n] be the set of sampled coordinates

� Instantiate Count-Sketch Si for k-sparse recovery.

� Feed updates to coordinates in Ai to sketch Si .

� Get estimate vector f̃ i from Si .

2. Find the smallest i such that f̃ i ̸= 0, and return a uniformly

random u ∼ {j ∈ [n] | f̃ ij ̸= 0}.

Claim: u is drawn uniformly from {j ∈ [n] | fj ̸= 0}.

45

rajes
Pencil

Back to L0 Sampling: The Full Algorithm

Set k = 100 log n.

1. For each i = 1, 2, . . . , log n:
� Sample each j ∈ [n] independently with probability 2j/n (can

be done via truly random hash function h : [n]→ [n/2j]). Let

Ai ⊂ [n] be the set of sampled coordinates

� Instantiate Count-Sketch Si for k-sparse recovery.

� Feed updates to coordinates in Ai to sketch Si .

� Get estimate vector f̃ i from Si .

2. Find the smallest i such that f̃ i ̸= 0, and return a uniformly

random u ∼ {j ∈ [n] | f̃ ij ̸= 0}.

Claim: u is drawn uniformly from {j ∈ [n] | fj ̸= 0}.

Space O(log3 n) words: log n independent copies of Count-Sketch

for k-sparse recovery, with k = O(log n)

46

L0 Sampling Analysis

Claim: With probability 1− 1/n, u is a uniformly random non-zero

coordinate of f .

Proof: Each count-sketch is correct with probability 1− 1/n2,

(making failure probability slightly smaller). By a union bound, all

log n are correct with probability greater than 1− 1/n. Condition

on this now, and let i∗ be such that k/8 ≤ 2i
∗

n · ∥f ∥0 ≤ k/4

47

L0 Sampling Analysis

Proof: Each count-sketch is correct with probability 1− 1/n2,

(making failure probability slightly smaller). By a union bound, all

log n are correct with probability greater than 1− 1/n. Condition

on this now, and let i∗ be such that k/8 ≤ 2i
∗

n · ∥f ∥0 ≤ k/4

Claim

With probability 1− 1/n2 we have |Aj | ≤ k for each

j = 1, 2, . . . , i∗.

48

rajes
Pencil

L0 Sampling Analysis

Proof: Each count-sketch is correct with probability 1− 1/n2,

(making failure probability slightly smaller). By a union bound, all

log n are correct with probability greater than 1− 1/n. Condition

on this now, and let i∗ be such that k/8 ≤ 2i
∗

n · ∥f ∥0 ≤ k/4

Claim

With probability 1− 1/n2 we have |Aj | ≤ k for each

j = 1, 2, . . . , i∗.

Proof: a coordinate t is sampled into ∪i∗j=1Aj with probability at

most
∑i∗

j=1 2
j/n ≤ 2i

∗+1/n. So the expected number of

coordinates in ∪i∗j=1Aj is at most 2i
∗+1/n∥f ∥0 ≤ k/2. By Chernoff:

Pr

[
| ∪i∗j=1 Aj | >

k

2
(1 +

1

2
)

]
< e−

k/2
3·4 < e−(100 log n)/48 < 1/n2

49

L0 Sampling Analysis

We now have that |Aj | ≤ k for each j = 1, 2, . . . , i∗ with probability

1− 1/n, where i∗ is the index such that k/8 ≤ 2i
∗

n · ∥f ∥0 ≤ k/4.

Claim

With probability 1− 1/n2 we have k/16 ≤ |Ai∗ |.

We have E[|Ai∗ |] = 2i
∗

n · ∥f ∥0 > k/8 = 100 log n/8. Claim follows

by another Chernoff bound

50

L0 Sampling Putting everything together

The last two claims together (with a union bound) yield:

Lemma

There exists an index i∗ ∈ [log n] such that with probability

1− 2/n2 we have |Aj | ≤ k for each j = 1, 2, . . . , i∗, and

k/16 ≤ |Ai∗ |.

51

rajes
Pencil

L0 Sampling Putting everything together

The last two claims together (with a union bound) yield:

Lemma

There exists an index i∗ ∈ [log n] such that with probability

1− 2/n2 we have |Aj | ≤ k for each j = 1, 2, . . . , i∗, and

k/16 ≤ |Ai∗ |.

It follows by the correctness of Count-Sketch for k-sparse recovery

that f̃ j = f j for each j = 1, 2, . . . , i∗. It also follows that f̃ j ̸= 0 for

at least one j ∈ [i∗]. Fix the first such j ≤ i∗.

The non-zero coordinates of f j are uniformly drawn from the

non-zero coordinates of f . Thus, a random non-zero from f j is a

uniformly random non-zero from f . ■

52

L0 Sampling: The Full Algorithm

Set k = 100 log n.

1. For each i = 1, 2, . . . , log n:

� Sample each j ∈ [n] independently with probability 2j/n (can

be done via truly random hash function h : [n]→ [n/2j]). Let

Ai ⊂ [n] be the set of sampled coordinates

� Instantiate Count-Sketch Si for k-sparse recovery.

� Feed updates to coordinates in Ai to sketch Si .

� Get estimate vector f̃ i from Si .

2. Find the smallest i such that f̃ i ̸= 0, and return a uniformly

random u ∼ {j ∈ [n] | f̃ ij ̸= 0}.

Claim: u is drawn uniformly from {j ∈ [n] | fj ̸= 0}.

53

L0 Sampling: The Full Algorithm

We have proven the following theorem (in the random oracle

streaming model):

Theorem

There is a turnstile streaming algorithm that, on a stream with

frequency vector f ∈ Rn, with probability 1− O(1/n), samples a

coordinate i uniformly from the non-zero coordinates of f . The

space required is O(log3 n) words.

Actually, we can do better for the k-sparse recovery problem.

Namely, there is a deterministic linear sketch S ∈ Rt×n for k-sparse

recovery, using t = O(k) rows! S is known as a Vandermonde

Matrix. Using this S instead of count-sketch gives O(log2 n) space.

It turns out this is optimal!

54

