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SIMILARITY SKETCHING

Given two length d vectors y and q, construct compact
representations (sketches) ¥ and § such that dist(y, q) can be
estimated accurately from y and q.

Each of y and q should require k < d space.



EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any two data points 'y, q € RY there exists a linear map
M:RY — R where k = O (%) such that with probability
1-6,

(1—e)lla—yl2 <|Mg—Ny|2 < (1+¢€)|a—yl-.




EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qy, . ..,q, € RY there exists a linear
map M : R — R¥ where k = O (bgiﬁ) such that with
probability (1 — ¢), for all i, j,

(1 -¢)llai —qjll2 < INg; — Ngj2 < (1 + €)|la; — qj]|2.

Extends to approximating all pairwise distances in a set of n

vectors via a



JACCARD SIMILARITY

Another distance measure (actually a similarity measure) between
binary vectors in {0,1} :

Definition (Jaccard Similarity)

lgNy|  # of non-zero entries in common

J(a,y) = = _
(@) lqUy] total # of non-zero entries

Natural similarity measure for binary vectors. 0 < J(q,y) < 1.



JACCARD SIMILARITY

Another distance measure (actually a similarity measure) between
binary vectors in {0,1} :

Definition (Jaccard Similarity)

lgNy|  # of non-zero entries in common

J(a,y)

" |qUy|  total # of non-zero entries

Natural similarity measure for binary vectors. 0 < J(q,y) < 1.

Can be applied to any data which has a natural binary
representation (more than you might think).

y:[101100}

q [110100}



JACCARD SIMILARITY: SET DEFINITION

Jaccard similarity can also be expressed over sets.

Definition (Jaccard Similarity)
Let U be a universe of items, and A, B C U. Then

|AN B|
J(A, B) = AUB]

e Customer purchase similarities.
e Document similarity

e Similarity of sparse embeddings.



SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8 million
songs (32 TB of data) in a fraction of a second?

Spectrogram extracted Processed spectrogram:
from audio clip. used to construct audio
“fingerprint” q € {0,1}“.

Each clip is represented by a high dimensional binary vector q.

110111 1 11101




JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

This|is|ajsentence|

LTI T T I T T A T T I T T T I T T I T T I T T I I T T T M T T T TTT]

a aardvark 200 zyzzyva

How many words do a pair of documents have in common?



JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

This]is[alsentence]

[TT T I T I T I I T I I T T T I T I T I T I T T I T I T T T T I I T T

How many bigrams do a pair of documents have in common?
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APPLICATIONS: DOCUMENT SIMILARITY

e Finding duplicate or new duplicate documents or webpages.
e Change detection for high-speed web caches.

e Finding near-duplicate emails or customer reviews which could
indicate spam.
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MinHash (Broder, '97):

e Choose k random hash functions

e Foriel,..., k,

o Let ¢ = min; q.=1 hi(j)-

[} C(q) = [C1 ..... Ck].




e Choose k random hash functions
hl,...,hk 5 {1,...,[1}—) [0,1].
e Foriel,... k,
e Let ¢; = minj q.—1 hi(j).

e C(q)=[c1,---,ck]

101111 1 111101

0 \ 1
24
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(qa,y).

ql 1 1|1 1
y| 1 1 1 1

Proof:

1. For ci(q) = ci(y), we need that
arg min;cq h(i) = argmin;cy h(i).
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(qa,y).

ql - 1 1

N\ /7 /
AN /

y 1\\\)( ] \

Al

0 1

2. Every non-zero index in q Uy is equally likely to produce the
lowest hash value. ¢j(q) = ci(y) only if this index is 1 in both q
and y. There are g Ny such indices. So:

qny

WMM)=GUH=EU§—JMJ) ]



MINHASH ANALYSIS

Let J = J(q,y) denote the Jaccard similarity between q and y.

Return: J=15"% 1[ci(q) = ¢i(y)].
N
Unbiased estimate for Jaccard

2= 7?TJ/)

ca)| 12| 24|76 |35 | cty)|.12).98] 76 |11 |

The more repetitions, the lower the variance.

vEr(F) ke T ver A
T 16
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MINHASH ANALYSIS

(09l ve)
)" =

Let J = J(q,y) denote the true Jaccard similarity.
Estimator: J = %Zf‘zl 1[ci(q) = ci(y)].

I

Var[J] = Y < F
ar[J] ,% J

Plug into Chebyshev inequality. How large does k need to be so
that with probability > 1 — 4:

Po(ly-Edl €< =

|J — ~|<e?
”f"‘) e
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MINHASH ANALYSIS

Chebyshev inequality: As long as k = O (), then with prob.
1-6,

J(a,y) — e < J(C(a),C(y)) < J(a,y) +e.

And J only takes O(k) time to compute! Independent of original
fingerprint dimension d.

Can be improved to log(1/4) dependence. Can anyone tell me
how?
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SIMILARITY SKETCHING

WAV
input data s
high dimensional vector representation l
1 111 1 111 1
451.68.10 .92

sketched representation
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NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database qg,...,q, € R? that
are close to some input query vector y € RY. |.e. find all of y's
“nearest neighbors” in the database.

e The Shazam problem.

e Audio + video search.

e Finding duplicate or near duplicate documents.
e Detecting seismic events.

How does similarity sketching help in these applications?

e Improves runtime of “linear scan” from O(nd) to O(nk).

e Improves space complexity from O(nd) to O(nk). This can
be super important — e.g. if it means the linear scan only
accesses vectors in fast memory.
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BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

21



BEYOND A LINEAR SCAN

This problem can already be solved for a small number of

dimensions using space partitioning approaches (e.g. kd-tree).

13

1 |-@--
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HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

e Locality-sensitive hashing [Indyk, Motwani, 1998]

e Spectral hashing [Weiss, Torralba, and Fergus, 2008|
e Vector quantization [Jégou, Douze, Schmid, 2009]

e This is most similar to the custom method e.g. Shazam uses.

Key Insight: Trade worse space-complexity for better
time-complexity.
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LOCALITY SENSITIVE HASH FUNCTIONS

Let h:RY — {1,...,m} be a random hash function.

We call h locality sensitive for similarity function s(q,y) if
Pr[h(q) == h(y)] is:

e Higher when q and y are more similar, i.e. s(q,y) is higher.
e Lower when g and y are more dissimilar, i.e. s(q,y) is lower.

Locality Sensitive Hash Function

PYPYS~~~=0000
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q,y) equal to Jaccard similarity:

e Let c: {0,1}9 — [0, 1] be a single instantiation of MinHash.

e Let g:[0,1] — {1,..., m} be a uniform random hash
function.

o Let h(q) = g(c(a)).

25



LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

o Let c:{0,1}¢ — [0,1] be a single instantiation of MinHash.

e Let g:[0,1] — {1,...,m} be a uniform random hash

function.
o Let h(x) = g(c(x)).
If J(q,y) = v,
Prlh(a) == hiy)l = T + (1-5) L

J+ O(+)
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NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

e Select random LSH function h: {0,1}¢ = 1,..., m.
e Create table T with m = O(n) slots.!
e Fori=1,...,n, insert q; into T(h(q,)).

Query:

e Want to find near neighbors of input y € {0,1}¢.
e Linear scan through all vectors q € T(h(y)) and return any
that are close to y. Time required is O(d - | T (h(y)|).

'Enough to make the O(1/m) term negligible.
27



NEAR NEIGHBOR SEARCH

d1(92(93 |94

—
CI2q3‘ P qz.—‘
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NEAR NEIGHBOR SEARCH

Two main considerations:

e False Negative Rate: What’s the probability we do not find
a vector that is close to y?

o False Positive Rate: What's the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime — we need to
compute J(q,y) for every q € T(h(y)) to check if it's actually

close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.
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REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What's the probability we do not find q with one LSH?
L Ho(%)
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REDUCING FALSE NEGATIVE RATE

4192|9394

N
gl

= N
q;

CI2q3|

dq I\Ch

B

Pre-processing:

e Select t independent LSH's hy,..., h;: {0,1}¢ = 1,... m.
o Create tables T1,..., T;, each with m slots.
e Fori=1...,nj=1,...t,
e Insert q; into T;(hj(q;)).
31



REDUCING FALSE NEGATIVE RATE

Query:

e Want to find near neighbors of input y € {0,1}¢.

e Linear scan through all vectors in
T1(h1(y)) U Ta(h2(y)) U ..., Te(he(y))-

Suppose the nearest database point q has J(y,q) = .4.

WAhat’s the probability we find q?
(1 — "

32


rajes
Pencil


WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y,z) = .2.

What is the probability we will need to compute J(z,y) in our
hashing scheme with one table? l.e. the probability that y hashes
into at least one bucket containing z.

In the new scheme with t = 10 tables?

- ¢ -9
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REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

e Choose parameter r ¢ Z+.
e Letcr,...,c : {0,1}9 — [0,1] be random MinHash.
e Let g:[0,1]" — {1,..., m} be a uniform random hash function.
e Let h(x) = g(c1(x), ..., c(x)).
r “bands”

o | | |

c(q) Cr(q)‘
L J

Y

gw )

HEEEEEEEENEEE




REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

e Choose parameter r € Z+.
e Letcy,...,c :{0,1}¢ — [0, 1] be random MinHash.
e Let g:[0,1]" — {1,..., m} be a uniform random hash function.

e Let h(x) = g(ci(x),...,c(x)).

I@hen Pr[h(q) == h(y)] + O( )

85
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TUNABLE LSH

Full LSH cheme has two parameters to tune:

T1
r “bands” L
G(a)|c1(q) dq) ]
") — T2
% @)l o(@) N —
I
i) H
D S
Ct,1(q) C«,z(q) q,r(q)\,
Tt
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TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

}CL".CQ;)\A? fn(t"(q/p/

Effect of increasing number of bands r on:

False Negatives False Positives

jrre arty detreasc
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SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.
Parameter: r = 1.

Chance we find q with J(y,q) = .8:

(- > 99 €

need

Chance we need to check z with J(y,z) = .4:
|- AR

39
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SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.
Parameter: r = 2.

Chance we find q with J(y,q) = .8:

4 r) ec l/ 7‘ — .S—
(- 3¢ 2799
(

1-.%<

Chance we need to check z with J(y,z) = .4:
t
- XY =« S5¥Y

40
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SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.
Parameter: r = 5.
Chance we find q with J(y,q) = .8:

-+

[=.¢4
Chance we need to check z with J(y,z) = .4:

41
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S-CURVE TUNING

Probability we check q when querying y if J(q,y) = v:
~1—(1-v")!

05

collision probability

o 01 02 03 04 05 0s 07 08 09
Jaccard similarity v

F=br=5

42



S-CURVE TUNING

Probability we check q when querying y if J(q,y) = v:
~1—(1-v")!

collision probability

o 01 02 03 04 05 0s 07 08 09
Jaccard similarity v

r=>51t=40
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S-CURVE TUNING

Probability we check q when querying y if J(q,y) = v:
~1—(1-v")!

05

collision probability

o 01 02 03 04 05 0s 07 08 09
Jaccard similarity v

r=40,t=5
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S-CURVE TUNING

Probability we check q when querying y if J(q,y) = v:
1—-(1-v")t

05

collision probability

o 01 02 03 - 04 05 0s 07 08 09 1
Jaccard similarity v

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 45



FINDING THE BEST PARAMETERS

t = number of tables, r = number of “bands”

Suppose we have y, q, z with
J(y.q) = p1 = Pr[h(y) = h(q)]

Iy, z) = p2 = Pr[h(y) = h(z)]

where p; > p>. What is the probability we find g when searching
from y?
1-(1-pp)f

What is the probability we find z when searching from y?
1—(1—p)

46



FINDING THE BEST PARAMETERS

t = number of tables, r = number of “bands”. Suppose we have

Y., q,z with p; > p> and:
Pr[find g] =1 — (1 — p})%, Prffind z] =1 — (1 — pj)*

False positive rate = (1 — p])*, False negative rate = 1 — (1 — p5)*.

Suppose we want False positive < .01 and False negative < .01.

47



FINDING THE BEST PARAMETERS

t = number of tables, r = number of “bands”. Suppose we have

Y., q,z with p; > p> and:
Prlfind g] =1 — (1 — p{), Pr[find z] =1 — (1 — pj))*

False positive rate = (1 — pj)*, False negative rate = 1 — (1 — p5)*.

Suppose we want False positive < .01 and False negative < .01.

1
Then we should set t = Ilzg(;gl_T;’)g) =0O(p;").

— r
So False negative rate & 1 — (1 — pf)Pr =~ (%) . So

48



FINDING THE BEST PARAMETERS

Lemma

Let y,q,z be points with py = Pr[h(y) = h(q)] and

p2 = Pr[h(y) = h(z)], where p1 > pa. Then to achieve false
positive and false negative rates < .01, it suffices to set

= number of tables, r = number of “bands”.

Note: as the gap p; — p2 becomes smaller, need to use many
more tables and bands!

49



FIXED THRESHOLD

Use Case 1: Fixed threshold.
e Shazam wants to find match to audio clip y in a database of 10
million clips.
e There are 10 true matches with J(y,q) > .9.
e There are 10,000 near matches with J(y,q) € [.7,.9].
e All other items have J(y,q) < .7.

With r =25 and t = 40,

e Hit probability for J(y,q) > .9is > 1 — (1 —.9%)% = .95
e Hit probability for J(y,q) € [.7,.9] is <1 — (1 —.9%°)% = 95
e Hit probability for J(y,q) < .7 is <1 — (1 —.7%5)% = .005

Upper bound on total number of items checked:

.95 - 10 + .95 - 10, 000 + .005 - 9,989, 990 ~ 60,000 < 10, 000, 000. 50



FIXED THRESHOLD

Space complexity: 40 hash tables ~ 40 - O(n).

Directly trade space for fast search.

Bl



FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ||q — y|lo < R, return a vector § with
ld—yllo < C- R in:
o Time: O(nl/c).
e Space: O (n'*1/€).

lla — y|lo = "hamming distance” = number of elements that differ
between g and y.

52



APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let g be the closest database vector to'y. Return a vector q with
G —yllo < C-lla—yllo in:

e Time: O(nl/c).

o Space: O (n'*1/€).

53



OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other similarity

measures.
Cosine similarity cos (6(x,y)) = HXTI);\)I(B!M:
X
X
B . j/
0
y

—1 < cos (8(x,y)) < 1.
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COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ||x — y||3:
e Suppose for simplicity that Hx||§ = HyH% =1.

JX =12 = xS -a<yy>+lyIT

2(1 —<Y,v7)
L (- tesco)

55
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Locality sensitive hash for cosine similarity:

e Let g € R? be randomly chosen with each entry A(0,1).
o h:RY — {1,—1} is defined h(x) = sign((g, x)).

If cos(6(x,y)) = v, what is Pr[h(x) == h(y)]|?

56



SIMHASH ANALYSIS

To prove:

Prih(x) == h(y)] =1 — % where h(x) = sign((g, x)).
o/

57



SIMHASH ANALYSIS

'

Pr[h(x) == h(y)] &~ probability x and y are on the same side of
hyperplane orthogonal to g.

Each hyperplane is equally likely!
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SIMHASH ANALYSIS

Theorem: If cos(6(x,y)) = v, then

0(x,y) cos 1(v)
Pr[h(x) == =1= = =] —
[h(x) == h(y)] - _
' J
— [
02 }ohw,ril
08 2
B
E 07
Zg 06
8
2, 05
7
=‘C. 03
(5]
02
01
00 0. 1 1 2 2 3 3
0
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SimHash can be tuned, just like our MinHash based LSH function
for Jaccard similarity:

o Let g1,...,g, € RY be randomly chosen with each entry
N(0,1).

e Let 0 =0(x,y)

o h:RY — {1,—1} is defined

h(x) = [sgn((g1, ). ... sgn( (g, X))
Prin(e) — hy)] = (1- )
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