CS-GY 6763: LECTURE 5 NEAR NEIGHBOR SEARCH IN HIGH DIMENSIONS + LOCALITY SENSITIVE HASHING

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

SIMILARITY SKETCHING

Given two length d vectors \mathbf{y} and \mathbf{q} , construct compact representations (sketches) $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{q}}$ such that $\mathrm{dist}(\mathbf{y},\mathbf{q})$ can be estimated accurately from $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{q}}$.

Each of $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{q}}$ should require $k \ll d$ space.

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any two data points \mathbf{y} , $\mathbf{q} \in \mathbb{R}^d$ there exists a <u>linear map</u> $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ such that with probability $1 - \delta$.

$$(1-\epsilon)\|\mathbf{q}-\mathbf{y}\|_2 \leq \|\mathbf{\Pi}\mathbf{q}-\mathbf{\Pi}\mathbf{y}\|_2 \leq (1+\epsilon)\|\mathbf{q}-\mathbf{y}\|_2.$$

7

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a <u>linear</u> $\underline{map} \ \Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$ such that with probability $(1 - \delta)$, for all i, j,

$$(1 - \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2 \le \|\mathbf{\Pi}\mathbf{q}_i - \mathbf{\Pi}\mathbf{q}_j\|_2 \le (1 + \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2.$$

Extends to approximating all pairwise distances in a set of n vectors via a **union bound**.

JACCARD SIMILARITY

Another distance measure (actually a similarity measure) between $\underline{\text{binary}}$ vectors in $\{0,1\}^d$:

Definition (Jaccard Similarity)

$$J(\mathbf{q}, \mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|} = \frac{\text{\# of non-zero entries in common}}{\text{total } \# \text{ of non-zero entries}}$$

Natural similarity measure for binary vectors. $0 \le J(\mathbf{q}, \mathbf{y}) \le 1$.

JACCARD SIMILARITY

Another distance measure (actually a similarity measure) between $\underline{\text{binary}}$ vectors in $\{0,1\}^d$:

Definition (Jaccard Similarity)

$$J(\mathbf{q}, \mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|} = \frac{\text{\# of non-zero entries in common}}{\text{total } \# \text{ of non-zero entries}}$$

Natural similarity measure for binary vectors. $0 \le J(\mathbf{q}, \mathbf{y}) \le 1$.

Can be applied to any data which has a natural binary representation (more than you might think).

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{q} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

JACCARD SIMILARITY: SET DEFINITION

Jaccard similarity can also be expressed over sets.

Definition (Jaccard Similarity)

Let U be a universe of items, and $A, B \subset U$. Then

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Customer purchase similarities.
- Document similarity
- Similarity of sparse embeddings.

SIMILARITY ESTIMATION

How does **Shazam** match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted from audio clip.

Processed spectrogram: used to construct audio "fingerprint" $\mathbf{q} \in \{0,1\}^d$.

Each clip is represented by a high dimensional binary vector \mathbf{q} .

	1	0	1	1	0	0	0	1	0	0	0	0	1	1	0	1
- 1																

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

How many words do a pair of documents have in common?

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

How many bigrams do a pair of documents have in common?

APPLICATIONS: DOCUMENT SIMILARITY

- Finding duplicate or new duplicate documents or webpages.
- Change detection for high-speed web caches.
- Finding near-duplicate emails or customer reviews which could indicate spam.

MINHASH

MinHash (Broder, '97):

- Choose k random hash functions $h_1, \ldots, h_k : \{1, \ldots, n\} \rightarrow [0, 1].$
- For $i \in 1, \ldots, k$,
 - Let $c_i = \min_{j, \mathbf{q}_i = 1} h_i(j)$.
- $\bullet \ \ C(\mathbf{q}) = [c_1, \ldots, c_k].$

MINHASH

• Choose *k* random hash functions

$$h_1, \ldots, h_k : \{1, \ldots, n\} \to [0, 1].$$

- For $i \in 1, \ldots, k$,
 - Let $c_i = \min_{j, \mathbf{q}_j = 1} h_i(j)$.
- $C(\mathbf{q}) = [c_1, \ldots, c_k].$

Claim:
$$Pr[c_i(\mathbf{q}) = c_i(\mathbf{y})] = J(\mathbf{q}, \mathbf{y}).$$

Proof:

1. For $c_i(\mathbf{q}) = c_i(\mathbf{y})$, we need that $\arg\min_{i \in \mathbf{q}} h(i) = \arg\min_{i \in \mathbf{y}} h(i)$.

Claim: $Pr[c_i(\mathbf{q}) = c_i(\mathbf{y})] = J(\mathbf{q}, \mathbf{y}).$

2. Every non-zero index in $\mathbf{q} \cup \mathbf{y}$ is equally likely to produce the lowest hash value. $c_i(\mathbf{q}) = c_i(\mathbf{y})$ only if this index is 1 in both \mathbf{q} and \mathbf{y} . There are $\mathbf{q} \cap \mathbf{y}$ such indices. So:

$$\Pr[c_i(\mathbf{q}) = c_i(\mathbf{y})] = \frac{\mathbf{q} \cap \mathbf{y}}{\mathbf{q} \cup \mathbf{y}} = J(\mathbf{q}, \mathbf{y})$$

Let $J = J(\mathbf{q}, \mathbf{y})$ denote the Jaccard similarity between \mathbf{q} and \mathbf{y} .

Return:
$$\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})].$$

Unbiased estimate for Jaccard similarity:

$$\mathbb{E}\tilde{J} = \mathcal{J}(\mathbf{q})$$
 $C(\mathbf{q}) = \frac{12}{.24} \cdot \frac{76}{.76} \cdot \frac{35}{.35} \quad C(\mathbf{y}) = \frac{.12}{.98} \cdot \frac{.76}{.11} \cdot \frac{.11}{.98} \cdot \frac$

The more repetitions, the lower the variance.

$$V \land \Gamma(J) = \frac{1}{K^2} \cdot \frac{1}{K} \cdot \frac{1}{K} \cdot \frac{1}{K} = \frac{1}{K^2} \cdot \frac{1}{K} \cdot \frac{$$

Let $J = J(\mathbf{q}, \mathbf{y})$ denote the true Jaccard similarity.

Estimator:
$$\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})].$$

$$Var[\tilde{J}] = \frac{1}{K} \cdot J + \frac{1}{K}$$

Plug into Chebyshev inequality. How large does k need to be so that with probability $> 1 - \delta$:

$$|J-\tilde{J}| \leq \epsilon?$$

Chebyshev inequality: As long as $k = O\left(\frac{1}{\epsilon^2 \delta}\right)$, then with prob. $1 - \delta$,

$$J(\mathbf{q}, \mathbf{y}) - \epsilon \le \tilde{J}(C(\mathbf{q}), C(\mathbf{y})) \le J(\mathbf{q}, \mathbf{y}) + \epsilon.$$

And \tilde{J} only takes O(k) time to compute! **Independent** of original fingerprint dimension d.

Can be improved to $\log(1/\delta)$ dependence. Can anyone tell me how?

SIMILARITY SKETCHING

Common goal: Find all vectors in database $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ that are close to some input query vector $\mathbf{y} \in \mathbb{R}^d$. I.e. find all of \mathbf{y} 's "nearest neighbors" in the database.

- The Shazam problem.
- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of "linear scan" from O(nd) to O(nk).
- Improves space complexity from O(nd) to O(nk). This can be super important e.g. if it means the linear scan only accesses vectors in fast memory.

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of dimensions using space partitioning approaches (e.g. kd-tree).

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

- Locality-sensitive hashing [Indyk, Motwani, 1998]
- Spectral hashing [Weiss, Torralba, and Fergus, 2008]
- Vector quantization [Jégou, Douze, Schmid, 2009]
 - This is most similar to the custom method e.g. Shazam uses.

Key Insight: Trade worse space-complexity for better time-complexity.

LOCALITY SENSITIVE HASH FUNCTIONS

Let $h: \mathbb{R}^d \to \{1, \dots, m\}$ be a random hash function.

We call h <u>locality sensitive</u> for similarity function $s(\mathbf{q}, \mathbf{y})$ if $Pr[h(\mathbf{q}) == h(\mathbf{y})]$ is:

- Higher when \mathbf{q} and \mathbf{y} are more similar, i.e. $s(\mathbf{q}, \mathbf{y})$ is higher.
- Lower when \mathbf{q} and \mathbf{y} are more dissimilar, i.e. $s(\mathbf{q}, \mathbf{y})$ is lower.

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for $s(\mathbf{q}, \mathbf{y})$ equal to Jaccard similarity:

- Let $c: \{0,1\}^d \to [0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \to \{1,\ldots,m\}$ be a uniform random hash function.
- Let $h(\mathbf{q}) = g(c(\mathbf{q}))$.

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

- Let $c: \{0,1\}^d \to [0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \to \{1,\ldots,m\}$ be a uniform random hash function.
- Let $h(\mathbf{x}) = g(c(\mathbf{x}))$.

If
$$J(\mathbf{q}, \mathbf{y}) = v$$
,

Basic approach for near neighbor search in a database.

Pre-processing:

- Select random LSH function $h: \{0,1\}^d \to 1, \dots, m$.
- Create table T with m = O(n) slots.¹
- For i = 1, ..., n, insert \mathbf{q}_i into $T(h(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors $\mathbf{q} \in T(h(\mathbf{y}))$ and return any that are close to \mathbf{y} . Time required is $O(d \cdot |T(h(\mathbf{y})|)$.

¹Enough to make the O(1/m) term negligible.

Two main considerations:

- False Negative Rate: What's the probability we do not find a vector that is close to y?
- False Positive Rate: What's the probability that a vector in T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we need to compute $J(\mathbf{q}, \mathbf{y})$ for every $\mathbf{q} \in \mathcal{T}(h(\mathbf{y}))$ to check if it's actually close to \mathbf{y} .

Note: The meaning of "close" and "not close" is application dependent. E.g. we might specify that we want to find anything with Jaccard similarity > .4, but not with Jaccard similarity < .2.

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point \mathbf{q} has $J(\mathbf{y}, \mathbf{q}) = .4$.

What's the probability we do not find q with one LSH?

REDUCING FALSE NEGATIVE RATE

Pre-processing:

- ullet Select t independent LSH's $h_1,\ldots,h_t:\{0,1\}^d o 1,\ldots,m$.
- Create tables T_1, \ldots, T_t , each with m slots.
- For i = 1, ..., n, j = 1, ..., t,
 - Insert \mathbf{q}_i into $T_j(h_j(\mathbf{q}_i))$.

REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors in $T_1(h_1(\mathbf{y})) \cup T_2(h_2(\mathbf{y})) \cup \dots, T_t(h_t(\mathbf{y})).$

Suppose the nearest database point **q** has $J(\mathbf{y}, \mathbf{q}) = .4$.

What's the probability we find q?
$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point **z** with $J(\mathbf{y},\mathbf{z})=.2$.

What is the probability we will need to compute $J(\mathbf{z}, \mathbf{y})$ in our hashing scheme with one table? I.e. the probability that \mathbf{y} hashes into at least one bucket containing \mathbf{z} .

In the new scheme with t = 10 tables?

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0, 1\}^d \to [0, 1]$ be random MinHash.
- Let $g:[0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.
- Let $h(x) = g(c_1(x), ..., c_r(x))$.

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0,1\}^d \to [0,1]$ be random MinHash.
- Let $g:[0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.
- Let $h(x) = g(c_1(x), ..., c_r(x))$.

If
$$U(\mathbf{q}, \mathbf{y}) = v$$
, then $\Pr[h(\mathbf{q}) == h(\mathbf{y})] = V$ + $O(\frac{1}{m})$

TUNABLE LSH

TUNABLE LSH

Full LSH cheme has two parameters to tune:

TUNABLE LSH

Effect of **increasing number of tables** *t* on:

False Negatives

decreasing

False Positives

increases

Effect of increasing number of bands r on:

False Negatives

jr we wiry

False Positives

decrease

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter:
$$r = 1$$
.

Chance we find **q** with J(y, q) = .8:

Chance we need to check **z** with $J(\mathbf{y}, \mathbf{z}) = .4$:

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 2.

Chance we find **q** with $J(\mathbf{y}, \mathbf{q}) = .8$:

need +=5

Chance we need to check **z** with $J(\mathbf{y}, \mathbf{z}) = .4$:

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter:
$$r = 5$$
.

Chance we find **q** with $J(\mathbf{y}, \mathbf{q}) = .8$:

Chance we need to check **z** with J(y, z) = .4:

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$\approx 1-(1-v^r)^t$$

$$r = 5, t = 5$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$\approx 1-(1-v^r)^t$$

$$r = 5, t = 40$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$\approx 1-(1-v^r)^t$$

$$r = 40, t = 5$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$1 - (1 - v^r)^t$$

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity.

t = number of tables, r = number of "bands"

Suppose we have y, q, z with

$$J(\boldsymbol{y}, \boldsymbol{q}) \approx p_1 = \Pr[h(\boldsymbol{y}) = h(\boldsymbol{q})]$$

$$J(\mathbf{y}, \mathbf{z}) \approx p_2 = \Pr[h(\mathbf{y}) = h(\mathbf{z})]$$

where $p_1 > p_2$. What is the probability we find \boldsymbol{q} when searching from \boldsymbol{y} ?

$$1-(1-p_1^r)^t$$

What is the probability we find z when searching from y?

$$1-(1-p_2^r)^t$$

t= number of tables, r= number of "bands". Suppose we have $m{y}, m{q}, m{z}$ with $p_1 > p_2$ and:

$$\Pr[\text{find } \mathbf{q}] = 1 - (1 - p_1^r)^t, \quad \Pr[\text{find } \mathbf{z}] = 1 - (1 - p_2^r)^t$$

False positive rate $=(1-p_1^r)^t$, False negative rate $=1-(1-p_2^r)^t$.

Suppose we want False positive < .01 and False negative < .01.

t= number of tables, r= number of "bands". Suppose we have $m{y}, m{q}, m{z}$ with $p_1 > p_2$ and:

$$Pr[find \mathbf{q}] = 1 - (1 - p_1^r)^t$$
, $Pr[find \mathbf{z}] = 1 - (1 - p_2^r)^t$

False positive rate $=(1-p_1^r)^t$, False negative rate $=1-(1-p_2^r)^t$.

Suppose we want False positive < .01 and False negative < .01.

Then we should set $t = \frac{\log(\frac{1}{100})}{\log(1-p_1^r)} = \Theta(p_1^{-r}).$

So False negative rate $pprox 1-(1-p_2^r)^{p_1^{-r}}pprox \left(rac{p_2}{p_1}
ight)^r$. So

$$r = \Theta\left(\frac{1}{\log \frac{\rho_1}{\rho_2}}\right), \qquad t = \Theta(\rho_1^{-r})$$

Lemma

Let \mathbf{y} , \mathbf{q} , \mathbf{z} be points with $p_1 = Pr[h(\mathbf{y}) = h(\mathbf{q})]$ and $p_2 = Pr[h(\mathbf{y}) = h(\mathbf{z})]$, where $p_1 > p_2$. Then to achieve false positive and false negative rates < .01, it suffices to set

$$r = \Theta\left(\frac{1}{\log \frac{p_1}{p_2}}\right), \qquad t = \Theta(p_1^{-r})$$

t = number of tables, r = number of "bands".

Note: as the gap $p_1 - p_2$ becomes smaller, need to use many more tables and bands!

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip y in a database of 10 million clips.
- There are 10 true matches with $J(\mathbf{y}, \mathbf{q}) > .9$.
- There are 10,000 near matches with $J(\mathbf{y}, \mathbf{q}) \in [.7, .9]$.
- All other items have $J(\mathbf{y}, \mathbf{q}) < .7$.

With r = 25 and t = 40,

- Hit probability for $J(\mathbf{y}, \mathbf{q}) > .9$ is $\gtrsim 1 (1 .9^{25})^{40} = .95$
- Hit probability for $J(\mathbf{y},\mathbf{q}) \in [.7,.9]$ is $\lesssim 1-(1-.9^{25})^{40}=.95$
- Hit probability for $J(\mathbf{y},\mathbf{q})<.7$ is $\lesssim 1-(1-.7^{25})^{40}=.005$

Upper bound on total number of items checked:

$$.95 \cdot 10 + .95 \cdot 10,000 + .005 \cdot 9,989,990 \approx 60,000 \ll 10,000,000.$$

FIXED THRESHOLD

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$.

Directly trade space for fast search.

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)

If there exists some q with $\|\mathbf{q} - \mathbf{y}\|_0 \le R$, return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}} - \mathbf{y}\|_0 \le C \cdot R$ in:

- Time: $O(n^{1/C})$.
- Space: $O(n^{1+1/C})$.

 $\|\mathbf{q} - \mathbf{y}\|_0 =$ "hamming distance" = number of elements that differ between \mathbf{q} and \mathbf{y} .

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)

Let q be the closest database vector to y. Return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}} - \mathbf{y}\|_0 \le C \cdot \|\mathbf{q} - \mathbf{y}\|_0$ in:

- Time: $\tilde{O}\left(n^{1/C}\right)$.
- Space: $\tilde{O}(n^{1+1/C})$.

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other similarity measures.

Cosine similarity
$$\cos(\theta(x,y)) = \frac{\langle x,y \rangle}{\|x\|_2 \|y\|_2}$$
:

$$-1 \le \cos(\theta(\mathbf{x}, \mathbf{y})) \le 1.$$

COSINE SIMILARITY

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance $\|\mathbf{x} - \mathbf{y}\|_2^2$:

• Suppose for simplicity that $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2 = 1$.

$$|X - \lambda|_{2}^{y} = |\lambda|_{2}^{y} - 3\langle\lambda^{2}\lambda\rangle + |\lambda|_{2}^{y}$$

$$|X - \lambda|_{2}^{y} = |\lambda|_{2}^{y} - 3\langle\lambda^{2}\lambda\rangle + |\lambda|_{2}^{y}$$

SIMHASH

Locality sensitive hash for cosine similarity:

- Let $\mathbf{g} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- $h: \mathbb{R}^d \to \{1, -1\}$ is defined $h(\mathbf{x}) = \text{sign}(\langle \mathbf{g}, \mathbf{x} \rangle)$.

If
$$cos(\theta(x, y)) = v$$
, what is $Pr[h(x) == h(y)]$?

SIMHASH ANALYSIS

To prove:

$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = 1 - \frac{\theta}{\pi}$$
, where $h(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle)$.

SIMHASH ANALYSIS

 $\Pr[h(\mathbf{x}) == h(\mathbf{y})] \approx \text{probability } \mathbf{x} \text{ and } \mathbf{y} \text{ are on the same side of hyperplane orthogonal to } \mathbf{g}.$

Each hyperplane is equally likely!

SIMHASH ANALYSIS

Theorem: If $cos(\theta(\mathbf{x}, \mathbf{y})) = v$, then

$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = 1 - \frac{\theta(\mathbf{x}, \mathbf{y})}{\pi} = 1 - \frac{\cos^{-1}(v)}{\pi}$$

SIMHASH

SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $\mathbf{g}_1, \dots, \mathbf{g}_r \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $\theta = \theta(x, y)$
- ullet $h: \mathbb{R}^d o \{1, -1\}$ is defined

$$\textit{h}(\textbf{x}) = [\mathsf{sign}(\langle \textbf{g}_1, \textbf{x} \rangle), \ldots, \mathsf{sign}(\langle \textbf{g}_r, \textbf{x} \rangle)]$$

$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = \left(1 - \frac{\theta}{\pi}\right)^r$$