
CS-GY 6763: LECTURE 5

NEAR NEIGHBOR SEARCH IN HIGH

DIMENSIONS + LOCALITY SENSITIVE

HASHING

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

1

SIMILARITY SKETCHING

Given two length d vectors y and q, construct compact

representations (sketches) ỹ and q̃ such that dist(y,q) can be

estimated accurately from ỹ and q̃.

Each of ỹ and q̃ should require k ≪ d space.

2

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any two data points y,q ∈ Rd there exists a linear map

Π : Rd → Rk where k = O
(
log(1/δ)

ϵ2

)
such that with probability

1− δ,

(1− ϵ)∥q− y∥2 ≤ ∥Πq−Πy∥2 ≤ (1 + ϵ)∥q− y∥2.

3

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points q1, . . . ,qn ∈ Rd there exists a linear

map Π : Rd → Rk where k = O
(
log(n/δ)

ϵ2

)
such that with

probability (1− δ), for all i , j ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1 + ϵ)∥qi − qj∥2.

Extends to approximating all pairwise distances in a set of n

vectors via a union bound.

4

JACCARD SIMILARITY

Another distance measure (actually a similarity measure) between

binary vectors in {0, 1}d :

Definition (Jaccard Similarity)

J(q, y) =
|q ∩ y|
|q ∪ y|

=
of non-zero entries in common

total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

5

JACCARD SIMILARITY

Another distance measure (actually a similarity measure) between

binary vectors in {0, 1}d :

Definition (Jaccard Similarity)

J(q, y) =
|q ∩ y|
|q ∪ y|

=
of non-zero entries in common

total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

Can be applied to any data which has a natural binary

representation (more than you might think).

y =
[
1 0 1 1 0 0

]
q =

[
1 1 0 1 0 0

]
6

JACCARD SIMILARITY: SET DEFINITION

Jaccard similarity can also be expressed over sets.

Definition (Jaccard Similarity)

Let U be a universe of items, and A,B ⊂ U. Then

J(A,B) =
|A ∩ B|
|A ∪ B|

� Customer purchase similarities.

� Document similarity

� Similarity of sparse embeddings.

7

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8 million

songs (32 TB of data) in a fraction of a second?

Spectrogram extracted

from audio clip.

Processed spectrogram:

used to construct audio

“fingerprint” q ∈ {0, 1}d .

Each clip is represented by a high dimensional binary vector q.

8

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?

9

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?

10

APPLICATIONS: DOCUMENT SIMILARITY

� Finding duplicate or new duplicate documents or webpages.

� Change detection for high-speed web caches.

� Finding near-duplicate emails or customer reviews which could

indicate spam.

11

MINHASH

MinHash (Broder, ’97):

� Choose k random hash functions

h1, . . . , hk : {1, . . . , n} → [0, 1].
� For i ∈ 1, . . . , k ,

� Let ci = minj,qj=1 hi (j).

� C (q) = [c1, . . . , ck].

12

MINHASH

� Choose k random hash functions

h1, . . . , hk : {1, . . . , n} → [0, 1].
� For i ∈ 1, . . . , k ,

� Let ci = minj,qj=1 hi (j).

� C (q) = [c1, . . . , ck].

13

MINHASH ANALYSIS

Claim: Pr[ci (q) = ci (y)] = J(q, y).

Proof:

1. For ci (q) = ci (y), we need that

argmini∈q h(i) = argmini∈y h(i).

14

MINHASH ANALYSIS

Claim: Pr[ci (q) = ci (y)] = J(q, y).

2. Every non-zero index in q ∪ y is equally likely to produce the

lowest hash value. ci (q) = ci (y) only if this index is 1 in both q

and y. There are q ∩ y such indices. So:

Pr[ci (q) = ci (y)] =
q ∩ y

q ∪ y
= J(q, y)

15

MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = 1
k

∑k
i=1 1[ci (q) = ci (y)].

Unbiased estimate for Jaccard similarity:

EJ̃ =

The more repetitions, the lower the variance.

16

rajes
Pencil

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = 1
k

∑k
i=1 1[ci (q) = ci (y)].

Var[J̃] =

Plug into Chebyshev inequality. How large does k need to be so

that with probability > 1− δ:

|J − J̃| ≤ ϵ?

17

rajes
Pencil

MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
(

1
ϵ2δ

)
, then with prob.

1− δ,

J(q, y)− ϵ ≤ J̃ (C (q),C (y)) ≤ J(q, y) + ϵ.

And J̃ only takes O(k) time to compute! Independent of original

fingerprint dimension d .

Can be improved to log(1/δ) dependence. Can anyone tell me

how?

18

SIMILARITY SKETCHING

19

break

19

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database q1, . . . ,qn ∈ Rd that

are close to some input query vector y ∈ Rd . I.e. find all of y’s

“nearest neighbors” in the database.

� The Shazam problem.

� Audio + video search.

� Finding duplicate or near duplicate documents.

� Detecting seismic events.

How does similarity sketching help in these applications?

� Improves runtime of “linear scan” from O(nd) to O(nk).

� Improves space complexity from O(nd) to O(nk). This can

be super important – e.g. if it means the linear scan only

accesses vectors in fast memory.

20

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

21

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of

dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, 2d)), which is only sublinear for

d = o(log n).

22

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

� Locality-sensitive hashing [Indyk, Motwani, 1998]

� Spectral hashing [Weiss, Torralba, and Fergus, 2008]

� Vector quantization [Jégou, Douze, Schmid, 2009]

� This is most similar to the custom method e.g. Shazam uses.

Key Insight: Trade worse space-complexity for better

time-complexity.

23

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if

Pr [h(q) == h(y)] is:

� Higher when q and y are more similar, i.e. s(q, y) is higher.

� Lower when q and y are more dissimilar, i.e. s(q, y) is lower.

24

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

� Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.

� Let g : [0, 1] → {1, . . . ,m} be a uniform random hash

function.

� Let h(q) = g(c(q)).

25

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

� Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.

� Let g : [0, 1] → {1, . . . ,m} be a uniform random hash

function.

� Let h(x) = g(c(x)).

If J(q, y) = v ,

Pr [h(q) == h(y)] =

26

rajes
Pencil

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

� Select random LSH function h : {0, 1}d → 1, . . . ,m.

� Create table T with m = O(n) slots.1

� For i = 1, . . . , n, insert qi into T (h(qi)).

Query:

� Want to find near neighbors of input y ∈ {0, 1}d .
� Linear scan through all vectors q ∈ T (h(y)) and return any

that are close to y. Time required is O(d · |T (h(y)|).

1Enough to make the O(1/m) term negligible.

27

NEAR NEIGHBOR SEARCH

28

NEAR NEIGHBOR SEARCH

Two main considerations:

� False Negative Rate: What’s the probability we do not find

a vector that is close to y?

� False Positive Rate: What’s the probability that a vector in

T (h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we need to

compute J(q, y) for every q ∈ T (h(y)) to check if it’s actually

close to y.

Note: The meaning of “close” and “not close” is application

dependent. E.g. we might specify that we want to find anything

with Jaccard similarity > .4, but not with Jaccard similarity < .2.

29

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q with one LSH?

30

rajes
Pencil

REDUCING FALSE NEGATIVE RATE

Pre-processing:

� Select t independent LSH’s h1, . . . , ht : {0, 1}d → 1, . . . ,m.

� Create tables T1, . . . ,Tt , each with m slots.

� For i = 1, . . . , n, j = 1, . . . , t,

� Insert qi into Tj(hj(qi)).

31

REDUCING FALSE NEGATIVE RATE

Query:

� Want to find near neighbors of input y ∈ {0, 1}d .
� Linear scan through all vectors in

T1(h1(y)) ∪ T2(h2(y)) ∪ . . . ,Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

32

rajes
Pencil

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .2.

What is the probability we will need to compute J(z, y) in our

hashing scheme with one table? I.e. the probability that y hashes

into at least one bucket containing z.

In the new scheme with t = 10 tables?

33

rajes
Pencil

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

� Choose parameter r ∈ Z+.

� Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

� Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

� Let h(x) = g(c1(x), . . . , cr (x)).

34

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

� Choose parameter r ∈ Z+.

� Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

� Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

� Let h(x) = g(c1(x), . . . , cr (x)).

If J(q, y) = v , then Pr [h(q) == h(y)] =

35

rajes
Pencil

TUNABLE LSH

36

rajes
Pencil

TUNABLE LSH

Full LSH cheme has two parameters to tune:

37

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

38

rajes
Pencil

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 1.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

39

rajes
Pencil

rajes
Pencil

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 2.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

40

rajes
Pencil

rajes
Pencil

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 5.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

41

rajes
Pencil

S-CURVE TUNING

Probability we check q when querying y if J(q, y) = v :

≈ 1− (1− v r)t

r = 5, t = 5

42

S-CURVE TUNING

Probability we check q when querying y if J(q, y) = v :

≈ 1− (1− v r)t

r = 5, t = 40

43

S-CURVE TUNING

Probability we check q when querying y if J(q, y) = v :

≈ 1− (1− v r)t

r = 40, t = 5

44

S-CURVE TUNING

Probability we check q when querying y if J(q, y) = v :

1− (1− v r)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 45

FINDING THE BEST PARAMETERS

t = number of tables, r = number of “bands”

Suppose we have y ,q, z with

J(y ,q) ≈ p1 = Pr[h(y) = h(q)]

J(y , z) ≈ p2 = Pr[h(y) = h(z)]

where p1 > p2. What is the probability we find q when searching

from y?

1− (1− pr1)
t

What is the probability we find z when searching from y?

1− (1− pr2)
t

46

FINDING THE BEST PARAMETERS

t = number of tables, r = number of “bands”. Suppose we have

y ,q, z with p1 > p2 and:

Pr[find q] = 1− (1− pr1)
t , Pr[find z] = 1− (1− pr2)

t

False positive rate = (1− pr1)
t , False negative rate = 1− (1− pr2)

t .

Suppose we want False positive < .01 and False negative < .01.

47

FINDING THE BEST PARAMETERS

t = number of tables, r = number of “bands”. Suppose we have

y ,q, z with p1 > p2 and:

Pr[find q] = 1− (1− pr1)
t , Pr[find z] = 1− (1− pr2)

t

False positive rate = (1− pr1)
t , False negative rate = 1− (1− pr2)

t .

Suppose we want False positive < .01 and False negative < .01.

Then we should set t =
log(1

100
)

log(1−pr1)
= Θ(p−r

1).

So False negative rate ≈ 1− (1− pr2)
p−r
1 ≈

(
p2
p1

)r
. So

r = Θ

(
1

log p1
p2

)
, t = Θ(p−r

1)

48

FINDING THE BEST PARAMETERS

Lemma

Let y ,q, z be points with p1 = Pr [h(y) = h(q)] and

p2 = Pr[h(y) = h(z)], where p1 > p2. Then to achieve false

positive and false negative rates < .01, it suffices to set

r = Θ

(
1

log p1
p2

)
, t = Θ(p−r

1)

t = number of tables, r = number of “bands”.

Note: as the gap p1 − p2 becomes smaller, need to use many

more tables and bands!

49

FIXED THRESHOLD

Use Case 1: Fixed threshold.

� Shazam wants to find match to audio clip y in a database of 10

million clips.

� There are 10 true matches with J(y,q) > .9.

� There are 10,000 near matches with J(y,q) ∈ [.7, .9].

� All other items have J(y,q) < .7.

With r = 25 and t = 40,

� Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

� Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

� Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Upper bound on total number of items checked:

.95 · 10 + .95 · 10, 000 + .005 · 9, 989, 990 ≈ 60, 000 ≪ 10, 000, 000. 50

FIXED THRESHOLD

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.

51

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)

If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃ with

∥q̃− y∥0 ≤ C · R in:

� Time: O
(
n1/C

)
.

� Space: O
(
n1+1/C

)
.

∥q− y∥0 = ”hamming distance” = number of elements that differ

between q and y.

52

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)

Let q be the closest database vector to y. Return a vector q̃ with

∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

� Time: Õ
(
n1/C

)
.

� Space: Õ
(
n1+1/C

)
.

53

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other similarity

measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

54

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

� Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.

55

rajes
Pencil

SIMHASH

Locality sensitive hash for cosine similarity:

� Let g ∈ Rd be randomly chosen with each entry N (0, 1).

� h : Rd → {1,−1} is defined h(x) = sign(⟨g, x⟩).

If cos(θ(x, y)) = v , what is Pr[h(x) == h(y)]?

56

SIMHASH ANALYSIS

To prove:

Pr[h(x) == h(y)] = 1− θ
π , where h(x) = sign(⟨g, x⟩).

57

SIMHASH ANALYSIS

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of

hyperplane orthogonal to g.

Each hyperplane is equally likely!
58

SIMHASH ANALYSIS

Theorem: If cos(θ(x, y)) = v , then

Pr[h(x) == h(y)] = 1− θ(x , y)

π
= 1− cos−1(v)

π

Not a linear function in v , as we had for MinHash, but still suffices

for locality sensitive hashing.

59

SIMHASH

SimHash can be tuned, just like our MinHash based LSH function

for Jaccard similarity:

� Let g1, . . . , gr ∈ Rd be randomly chosen with each entry

N (0, 1).

� Let θ = θ(x , y)

� h : Rd → {1,−1} is defined

h(x) = [sign(⟨g1, x⟩), . . . , sign(⟨gr , x⟩)]

Pr[h(x) == h(y)] =

(
1− θ

π

)r

60

