CS-GY 6763: LECTURE 6 GRADIENT DESCENT AND PROJECTED GRADIENT DESCENT

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

PROJECT

- HW Due this Friday 3/11 by end of day.
- If doing final project, start looking at papers, thinking about research problems (reach out to me if you need help).
- HW#3 released next week.
- Midterm during first half of class, 3/21
- Midterm prep sheet to be posted soon.

NEW UNIT: CONTINUOUS OPTIMIZATION

Have some function $f: \mathbb{R}^d \to \mathbb{R}$. Want to find \mathbf{x}^* such that:

$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x}).$$

Or at least $\hat{\mathbf{x}}$ which is close to a minimum. E.g.

$$f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x}) + \epsilon$$

Often we have some additional constraints:

- x > 0.
- $\|\mathbf{x}\|_2 \le R$, $\|\mathbf{x}\|_1 \le R$.
- $\mathbf{a}^T \mathbf{x} > c$.

CONTINUOUS OPTIMIZATION

Dimension d = 2:

OPTIMIZATION IN MACHINE LEARNING

Continuous optimization is the foundation of modern machine learning.

Supervised learning: Want to learn a model that maps inputs

- numerical data vectors
- images, video
- text documents

to predictions

- numerical value (probability stock price increases)
- label (is the image a cat? does the image contain a car?)
- decision (turn car left, rotate robotic arm)

MACHINE LEARNING MODEL

Let $M_{\mathbf{x}}$ be a model with parameters $\mathbf{x} = \{x_1, \dots, x_k\}$, which takes as input a data vector \mathbf{a} and outputs a prediction.

Example:

$$M_{\mathbf{x}}(\mathbf{a}) = \operatorname{sign}(\mathbf{a}^T \mathbf{x})$$

MACHINE LEARNING MODEL

Example:

 $\mathbf{x} \in \mathbb{R}^{(\# \text{ of connections})}$ is the parameter vector containing all the network weights.

SUPERVISED LEARNING

Classic approach in <u>supervised learning</u>: Find a model that works well on data that you already have the answer for (labels, values, classes, etc.).

- Model M_x parameterized by a vector of numbers x.
- Dataset $\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(n)}$ with outputs $y^{(1)}, \dots, y^{(n)}$.

Want to find $\hat{\mathbf{x}}$ so that $M_{\hat{\mathbf{x}}}(\mathbf{a}^{(i)}) \approx y^{(i)}$ for $i \in 1, \ldots, n$.

How do we turn this into a function minimization problem?

LOSS FUNCTION

Loss function $L(M_x(\mathbf{a}), y)$: Some measure of distance between prediction $M_x(\mathbf{a})$ and target output y. Increases if they are further apart.

- Squared (ℓ_2) loss: $|M_{\mathbf{x}}(\mathbf{a}) y|^2$
- Absolute deviation (ℓ_1) loss: $|M_x(\mathbf{a}) y|$
- Hinge loss: $1 y \cdot M_x(a)$
- Cross-entropy loss (log loss).
- Etc.

EMPIRICAL RISK MINIMIZATION

Empirical risk minimization:

$$f(\mathbf{x}) = \sum_{i=1}^{n} L\left(M_{\mathbf{x}}(\mathbf{a}^{(i)}), y^{(i)}\right)$$

Solve the optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$.

EXAMPLE: LINEAR REGRESSION

- $M_{\mathbf{x}}(\mathbf{a}) = \mathbf{x}^T \mathbf{a}$. \mathbf{x} contains the regression coefficients.
- $L(z, y) = |z y|^2$.
- $f(\mathbf{x}) = \sum_{i=1}^{n} |\mathbf{x}^{T} \mathbf{a}^{(i)} y^{(i)}|^{2}$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

where **A** is a matrix with $\mathbf{a}^{(i)}$ as its i^{th} row and \mathbf{y} is a vector with $y^{(i)}$ as its i^{th} entry.

ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize $f(\mathbf{x})$ will depend on:

- The form of f(x) (is it linear, is it quadratic, does it have finite sum structure, etc.)
- If there are any additional constraints imposed on \mathbf{x} . E.g. $\|\mathbf{x}\|_2 \leq c$.

What are some example algorithms for continuous optimization?

Elliporids Scmi-definit prugrumu interior point methods

GRADIENT DESCENT

Gradient descent: A greedy algorithm for minimizing functions of multiple variables that often works amazingly well.

(and sometimes we can prove it works)

CALCULUS REVIEW

For i = 1, ..., d, let x_i be the i^{th} entry of \mathbf{x} . Let $\mathbf{e}^{(i)}$ be the i^{th} standard basis vector.

Partial derivative:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}^{(i)}) - f(\mathbf{x})}{t}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t\to 0} \frac{f(\mathbf{x}+t\mathbf{v})-f(\mathbf{x})}{t}$$

CALCULUS REVIEW

Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v}.$$

FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

- Function oracle: Evaluate $f(\mathbf{x})$ for any \mathbf{x} .
- **Gradient oracle**: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .

We view the implementation of these oracles as black-boxes, but they can often require a fair bit of computation.

EXAMPLE GRADIENT EVALUATION

N770

Linear least-squares regression:

- Given $\mathbf{a}^{(1)}, \dots \mathbf{a}^{(n)} \in \mathbb{R}^d, \ y^{(1)}, \dots y^{(n)} \in \mathbb{R}$.
- Want to minimize:

$$f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{x}^{T} \mathbf{a}^{(i)} - y^{(i)})^{2} = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^n 2\left(\mathbf{x}^T \mathbf{a}^{(i)} - y^{(i)}\right) \cdot a_j^{(i)} = (2\mathbf{A}\mathbf{x} - \mathbf{y})^T \alpha^{(j)}$$

$$2 \stackrel{\uparrow}{A} \stackrel{\chi}{\mathbf{x}} - 2 \stackrel{\uparrow}{\mathbf{A}} \stackrel{\chi}{\mathbf{y}}$$

where $\alpha^{(j)}$ is the j^{th} column of **A**.

$$\overline{\nabla f(\mathbf{x})} = 2\mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{y})$$

What is the time complexity of a gradient oracle for $\nabla f(x)$?

A in time O(min(n/i)) (min(n/i))

DECENT METHODS

Greedy approach: Given a starting point \mathbf{x} , make a small adjustment that decreases $f(\mathbf{x})$. In particular, $\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{v}$ and $f(\mathbf{x}) \leftarrow f(\mathbf{x} + \eta \mathbf{v})$.

What property do I want in v?

Leading question: When η is small, what's an approximation for $f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x})$?

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx \underbrace{\int \left(\int f(\mathbf{x}) \right)^{T}}_{T} \cdot V$$

$$V = - \left(\int f(\mathbf{x}) \right)^{T}$$

DIRECTIONAL DERIVATIVES

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t\to 0} \frac{f(\mathbf{x}+t\mathbf{v})-f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^T \mathbf{v}.$$

So:

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx \eta \nabla f(\mathbf{x})^{\hat{i}} \nabla$$

How should we choose v so that $f(x + \eta v) < f(x)$?

$$V = -\frac{\nabla f(x)^{T}}{|\nabla f(x)^{T}|_{L}}$$

GRADIENT DESCENT

Prototype algorithm:

- Choose starting point $\mathbf{x}^{(0)}$.
- For i = 0, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\mathbf{x}^{(T)}$.

 η is a step-size parameter, which is often adapted on the go. For now, assume it is fixed ahead of time.

GRADIENT DESCENT INTUITION

1 dimensional example:

GRADIENT DESCENT INTUITION

2 dimensional example:

KEY RESULTS

For a convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations \mathcal{T} , gradient descent will converge to a **near global minimum**:

$$f(\mathbf{x}^{(T)}) \leq f(\mathbf{x}^*) + \epsilon.$$

Examples: least squares regression, logistic regression, kernel regression, SVMs.

For a non-convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations T, gradient descent will converge to a near stationary point:

$$\|\nabla f(\mathbf{x}^{(T)})\|_2 \leq \epsilon.$$

Examples: neural networks, matrix completion problems, mixture models.

CONVEX VS. NON-CONVEX

One issue with non-convex functions is that they can have **local** minima. Even when they don't, convergence analysis requires different assumptions than convex functions.

APPROACH FOR THIS UNIT

We care about <u>how fast</u> gradient descent and related methods converge, not just that they do converge.

- Bounding iteration complexity requires placing some assumptions on $f(\mathbf{x})$.
- Stronger assumptions lead to better bounds on the convergence.

Understanding these assumptions can help us design faster variants of gradient descent (there are many!).

Today, we will start with **convex functions** only.

CONVEXITY

Definition (Convex)

A function f is convex iff for any $\mathbf{x}, \mathbf{y}, \lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\mathbf{x}) + \lambda \cdot f(\mathbf{y}) \ge f((1 - \lambda) \cdot \mathbf{x} + \lambda \cdot \mathbf{y})$$

GRADIENT DESCENT

Definition (Convex)

A function f is convex if and only if for any \mathbf{x}, \mathbf{y} :

$$f(\mathbf{x} + \mathbf{z}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{z}$$

Equivalently:

Assume:

- f is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(0)}\|_2 \leq R$.

Gradient descent:

- Choose number of steps T.
- Starting point $\mathbf{x}^{(0)}$. E.g. $\mathbf{x}^{(0)} = \vec{0}$.
- $\bullet \ \eta = \frac{R}{G\sqrt{T}}$
- For i = 0, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

Claim (GD Convergence Bound)

If
$$T \ge \frac{R^2G^2}{\epsilon^2}$$
, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof is made tricky by the fact that $f(\mathbf{x}^{(i)})$ does not improve monotonically. We can "overshoot" the minimum.

"FUNDAMENTAL THEOREM OF OPTIMIZATION"

Fact: For any two vectors v, u of the same dimension, we have:

$$v^T u = \langle v, u \rangle = \frac{1}{2} (\|v\|_2^2 + \|u\|_2^2 - \|u - v\|_2^2)$$

Proof: Recall
$$||u - v||_2^2 = ||u||_2^2 + ||v||_2^2 - 2\langle u, v \rangle$$

Inner products can be written as a sum of norms!

Claim (GD Convergence Bound)

If
$$T \ge \frac{R^2 G^2}{\epsilon^2}$$
 and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof: For all i = 0, ..., T:

$$\begin{split} f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) &\leq \nabla f(\mathbf{x}^{(i)})^T (\mathbf{x}^{(i)} - \mathbf{x}^*) & \text{convex,} \neq \mathbf{y} \\ &= \frac{1}{\eta} \langle \mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}, \ \mathbf{x}^{(i)} - \mathbf{x}^* \rangle & \text{for } \mathbf{x}^{(i)} \neq \mathbf{y} \end{split}$$

Claim (GD Convergence Bound)

If
$$T \ge \frac{R^2 G^2}{\epsilon^2}$$
 and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof: For all i = 0, ..., T:

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^{(i)})^T (\mathbf{x}^{(i)} - \mathbf{x}^*)$$

$$= \frac{1}{\eta} \langle \mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}, \ \mathbf{x}^{(i)} - \mathbf{x}^* \rangle$$

$$\leq \frac{1}{2\eta} (\|\mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}\|_2^2 + \|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2)$$

Claim (GD Convergence Bound)

If
$$T \ge \frac{R^2 G^2}{\epsilon^2}$$
 and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof: For all i = 0, ..., T:

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^{(i)})^T (\mathbf{x}^{(i)} - \mathbf{x}^*)$$

$$= \frac{1}{\eta} \langle \mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}, \ \mathbf{x}^{(i)} - \mathbf{x}^* \rangle$$

$$\leq \frac{1}{2\eta} (\|\mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}\|_2^2 + \|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2)$$

$$\leq \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{1}{2\eta} \|\eta \nabla f(\mathbf{x}^{(i)})\|_2^2$$

Claim (GD Convergence Bound)

If
$$T \ge \frac{R^2 G^2}{\epsilon^2}$$
 and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof: For all
$$i = 0, ..., T$$
:
$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^{(i)})^T (\mathbf{x}^{(i)} - \mathbf{x}^*)$$

$$= \frac{1}{\eta} \langle \mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}, \ \mathbf{x}^{(i)} - \mathbf{x}^* \rangle$$

$$\leq \frac{1}{2\eta} (\|\mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}\|_2^2 + \|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2)$$

$$\leq \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{1}{2\eta} \|\eta \nabla f(\mathbf{x}^{(i)})\|_2^2$$

$$\leq \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2\eta}$$

Claim (GD Convergence Bound)

If
$$T \geq \frac{R^2G^2}{\epsilon^2}$$
 and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon$.

Proof: For all i = 0, ..., T,

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
ping sum:

Telescoping sum:

$$\sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{T\eta G^2}{2}$$

$$\frac{1}{T} \sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \frac{R^2}{2T\eta} + \frac{\eta G^2}{2}$$

Claim (GD Convergence Bound)

If
$$T \geq \frac{R^2G^2}{\epsilon^2}$$
 and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon$.

Final step:

$$\frac{1}{T} \sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \epsilon$$
$$\left[\frac{1}{T} \sum_{i=0}^{T-1} f(\mathbf{x}^{(i)}) \right] - f(\mathbf{x}^*) \le \epsilon$$

We always have that $\min_i f(\mathbf{x}^{(i)}) \leq \frac{1}{T} \sum_{i=0}^{T-1} f(\mathbf{x}^{(i)})$, so this is what we return:

$$f(\hat{\mathbf{x}}) = \min_{i \in 1, ..., T} f(\mathbf{x}^{(i)}) \leq f(\mathbf{x}^*) + \epsilon.$$

CONSTRAINED CONVEX OPTIMIZATION

52 (x / lx/,</)

Typical goal: Solve a <u>convex minimization problem with</u> additional <u>convex constraints</u>.

$$\min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x})$$

where S is a **convex set**.

Which of these is convex?

CONSTRAINED CONVEX OPTIMIZATION

Definition (Convex set)

A set \mathcal{S} is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{S}, \lambda \in [0, 1]$:

$$(1-\lambda)\mathbf{x} + \lambda\mathbf{y} \in \mathcal{S}.$$

PROBLEM WITH GRADIENT DESCENT

Gradient descent:

- For i = 0, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.

Even if we start with $\mathbf{x}^{(0)} \in \mathcal{S}$, there is no guarantee that $\mathbf{x}^{(0)} - \eta \nabla f(\mathbf{x}^{(0)})$ will remain in our set.

Extremely simple modification: Force $\mathbf{x}^{(i)}$ to be in \mathcal{S} by **projecting** onto the set.

CONSTRAINED FIRST ORDER OPTIMIZATION

Given a function f to minimize and a convex constraint set S, assume we have:

- Function oracle: Evaluate $f(\mathbf{x})$ for any \mathbf{x} .
- **Gradient oracle**: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- Projection oracle: Evaluate $P_S(\mathbf{x})$ for any \mathbf{x} .

$$P_{\mathcal{S}}(\mathbf{x}) = \operatorname*{arg\,min}_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|_2$$

PROJECTION ORACLES

- (5(x) = {x/1x/2 it x \$15
- How would you implement $P_{\mathcal{S}}$ for $\mathcal{S} = \{\mathbf{y} : \|\mathbf{y}\|_2 \leq 1\}$.
- How would you implement P_S for $S = \{ \mathbf{y} : \mathbf{y} = \mathbf{Q}\mathbf{z} \}$.

PROJECTED GRADIENT DESCENT

Given function $f(\mathbf{x})$ and set \mathcal{S} , such that $\|\nabla f(\mathbf{x})\|_2 \leq G$ for all $\mathbf{x} \in \mathcal{S}$ and starting point $\mathbf{x}^{(0)}$ with $\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \leq R$.

Projected gradient descent:

- Select starting point $\mathbf{x}^{(0)}$, $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 0, ..., T:
 - $\mathbf{z} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
 - $\mathbf{x}^{(i+1)} = P_{S}(\mathbf{z})$
- Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.

Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2 G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

PROJECTED GRADIENT DESCENT ANALYSIS

Analysis is almost identical to standard gradient descent! We just need one additional claim:

Claim (Contraction Property of Convex Projection)

If S is convex, then for $\underline{any} \ \mathbf{y} \in S$,

$$\|\mathbf{y} - P_{\mathcal{S}}(\mathbf{x})\|_2 \le \|\mathbf{y} - \mathbf{x}\|_2.$$

GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2 G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all
$$i = 0, ..., T$$
,
$$\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2$$

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{z} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
$$\le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

x(1-1) = P, (x)

Same telescoping sum argument:

$$\left\lceil \frac{1}{T} \sum_{i=0}^{T-1} f(\mathbf{x}^{(i)}) \right\rceil - f(\mathbf{x}^*) \leq \frac{R^2}{2T\eta} + \frac{\eta G^2}{2}.$$

GRADIENT DESCENT

Conditions:

- Convexity: f is a convex function, S is a convex set.
- Bounded initial distant:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$$

Bounded gradients (Lipschitz function):

$$\|\nabla f(\mathbf{x})\|_2 \leq G$$
 for all $\mathbf{x} \in \mathcal{S}$.

Theorem

GD Convergence Bound] (Projected) Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{2}$$
 iterations.

BEYOND THE BASIC BOUND

$$|\nabla_{x}L|_{2} \leq |Y|_{2}$$

$$|\nabla_{x}L|_{2} \leq |Y|_{2}$$

Can our convergence bound be tightened for certain functions? Can it guide us towards faster algorithms?

Goals:

- Improve ϵ dependence below $1/\epsilon^2$.
 - Ideally $1/\epsilon$ or $\log(1/\epsilon)$.
- Reduce or eliminate dependence on G and R.

SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if, for all x, y

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \frac{\beta}{\beta} \|\mathbf{x} - \mathbf{y}\|_2$$

After some calculus (see Lem. 3.4 in **Bubeck's book**), this implies: $\beta = \frac{\beta}{2}$

For a scalar valued function f, equivalent to $f''(x) \leq \beta$.

SMOOTHNESS

Recall from definition of convexity that:

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

So now we have an upper and lower bound.

$$0 \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)}) \right] - \nabla f(\mathbf{x}^{(t)})^{T} (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_{2}^{2}$$

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)}) \right] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$$

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$

Theorem (GD convergence for β -smooth functions.)

Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Complete proof in Theorem 3.5 of Bubeck's book

STRONG CONVEXITY

Definition (α -strongly convex)

< 1/2 /x-x1

A convex function f is α -strongly convex if, for all \mathbf{x} , \mathbf{y}

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \ge \frac{\alpha}{2} ||\mathbf{x} - \mathbf{y}||_2^2$$

 α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent to $f''(x) \ge \alpha$.

GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

- Choose number of steps *T*.
- For i = 1, ..., T:
 - $\eta = \frac{2}{\alpha \cdot (i+1)}$
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

Theorem (GD convergence for α -strongly convex functions.)

Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq G$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha(T-1)}$$

Corollary: If
$$T = O\left(\frac{G^2}{\alpha \epsilon}\right)$$
 we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

What if f is both β -smooth and α -strongly convex?

$$\frac{\alpha}{2}\|\mathbf{x}-\mathbf{y}\|_2^2 \leq [f(\mathbf{y})-f(\mathbf{x})] - \nabla f(\mathbf{x})^T(\mathbf{y}-\mathbf{x}) \leq \frac{\beta}{2}\|\mathbf{x}-\mathbf{y}\|_2^2.$$

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-(T-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of f.

Is it better if κ is large or small?

SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the

 $\nabla f(\mathbf{x}^*) = \mathbf{0}$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2,$$

we have:

$$\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_{2}^{2} \leq \frac{2}{\alpha} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_{2}^{2} \geq \frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right]$$

$$f(\mathbf{x}^T) \leftarrow f(\mathbf{x}^T) \leftarrow \int_{1}^{\infty} |\mathbf{x}^T - \mathbf{x}^T|$$

$$< \int_{2}^{\infty} e^{-T} \int_{1}^{\infty} |\mathbf{x}^T - \mathbf{x}^T|$$

$$< \int_{2}^{\infty} e^{-T} \int_{1}^{\infty} |f(\mathbf{x}^T) - \mathbf{x}^T|$$

Corollary (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{\alpha} e^{-(T-1)\frac{\alpha}{\beta}} \cdot \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If
$$T = O\left(\frac{\beta}{\alpha}\log(\beta/\alpha\epsilon)\right) = O(\kappa\log(\kappa/\epsilon))$$
 we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Alternative Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $\mathbf{H} = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x}) \right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

For vector \mathbf{x}, \mathbf{v} :

$$\nabla f(\mathbf{x} + t\mathbf{v}) \approx \nabla f(\mathbf{x}) + t \left[\nabla^2 f(\mathbf{x}) \right] \mathbf{v}.$$

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $\mathbf{H} = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x}) \right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

Example: Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Recall that

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b}).$$

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is positive semidefinite (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \geq 0$.

This is a natural notion of "positivity" for symmetric matrices. To denote that **H** is PSD we will typically use "Loewner order" notation (\succeq in LaTex):

$$\mathbf{H} \succ 0$$
.

We write $\mathbf{B} \succeq \mathbf{A}$ or equivalently $\mathbf{A} \preceq \mathbf{B}$ to denote that $(\mathbf{B} - \mathbf{A})$ is positive semidefinite. This gives a <u>partial ordering</u> on matrices.

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is positive semidefinite (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \geq 0$.

For the least squares regression loss function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, $\mathbf{H} = \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A}$ for all \mathbf{x} . Is \mathbf{H} PSD?

THE LINEAR ALGEBRA OF CONDITIONING

If f is β -smooth and α -strongly convex then at any point \mathbf{x} , $\mathbf{H} = \nabla^2 f(\mathbf{x})$ satisfies:

$$\alpha \mathbf{I}_{d \times d} \leq \mathbf{H} \leq \beta \mathbf{I}_{d \times d}$$

where $\mathbf{I}_{d\times d}$ is a $d\times d$ identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions:

$$\alpha \leq f''(x) \leq \beta$$
.

SMOOTH AND STRONGLY CONVEX HESSIAN

$$\alpha \mathbf{I}_{d \times d} \leq \mathbf{H} \leq \beta \mathbf{I}_{d \times d}$$
.

Equivalently for any z,

$$\alpha \|\mathbf{z}\|_2^2 \leq \mathbf{z}^T \mathbf{H} \mathbf{z} \leq \beta \|\mathbf{z}\|_2^2.$$

SIMPLE EXAMPLE

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where \mathbf{D} is a diagonal matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

$$\|\mathbf{z}\|_{2}^{2} \leq \mathbf{z}^{T}\mathbf{H}\mathbf{z} \leq \beta \|\mathbf{z}\|_{2}^{2}$$

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = 1, d_2^2 = 1$.

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = \frac{1}{3}, d_2^2 = 2$.

Any symmetric matrix ${\bf H}$ has an <u>orthogonal</u>, real valued eigendecomposition.

Here **V** is square and orthogonal, so $\mathbf{V}^T\mathbf{V} = \mathbf{V}\mathbf{V}^T = \mathbf{I}$. And for each \mathbf{v}_i , we have:

$$\mathbf{H}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$
.

By definition, that's what makes $\mathbf{v}_1, \dots, \mathbf{v}_d$ eigenvectors.

Recall
$$\mathbf{V}\mathbf{V}^T = \mathbf{V}^T\mathbf{V} = \mathbf{I}$$
.

Claim: H is PSD $\Leftrightarrow \lambda_1, ..., \lambda_d \geq 0$.

Recall
$$\mathbf{V}\mathbf{V}^T = \mathbf{V}^T\mathbf{V} = \mathbf{I}$$
.

Claim: $\alpha \mathbf{I} \leq \mathbf{H} \leq \beta \mathbf{I} \Leftrightarrow \alpha \leq \lambda_1, ..., \lambda_d \leq \beta$.

Recall
$$\mathbf{V}\mathbf{V}^T = \mathbf{V}^T\mathbf{V} = \mathbf{I}$$
.

In other words, if we let $\lambda_{max}(\mathbf{H})$ and $\lambda_{min}(\mathbf{H})$ be the smallest and largest eigenvalues of \mathbf{H} , then for all \mathbf{z} we have:

$$\mathbf{z}^T \mathbf{H} \mathbf{z} \leq \lambda_{\max}(\mathbf{H}) \cdot \|\mathbf{z}\|^2$$

 $\mathbf{z}^T \mathbf{H} \mathbf{z} \geq \lambda_{\min}(\mathbf{H}) \cdot \|\mathbf{z}\|^2$

If the maximum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \beta$ and the minimum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \alpha$ then $f(\mathbf{x})$ is β -smooth and α -strongly convex.

$$\lambda_{\mathsf{max}}(\mathbf{H}) = \beta$$
 $\lambda_{\mathsf{min}}(\mathbf{H}) = \alpha$

POLYNOMIAL VIEW POINT

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{2}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \le e^{-T/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Goal: Prove for
$$f(x) = \|Ax - b\|_2^2$$
.

Let $\lambda_{\text{max}} = \lambda_{\text{max}}(\mathbf{A}^T \mathbf{A})$. Gradient descent update is:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{2 \, \lambda_{\mathsf{max}}} 2 \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{x}^{(t)} - \mathbf{b})$$

ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A}\right) (\mathbf{x}^{(t)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right)$ in terms of the eigenvalues $\lambda_{\max} = \lambda_1 \geq \ldots \geq \lambda_d = \lambda_{\min}$ of $\mathbf{A}^T \mathbf{A}$?

UNROLLED GRADIENT DESCENT

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A} \right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right)^T$?

So we have
$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \le$$

IMPROVING GRADIENT DESCENT

We now have a pretty good understanding of gradient descent.

Number of iterations for ϵ error:

	G-Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
$\alpha\text{-strong convex}$	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(rac{eta}{lpha}\log(1/\epsilon) ight)$