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GRADIENT DESCENT

Gradient descent: A greedy algorithm for minimizing functions of

multiple variables that often works amazingly well.

(and sometimes we can prove it works)
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GRADIENT DESCENT ANALYSIS

Assume:

� f is convex.

� Lipschitz function: for all x, ∥∇f (x)∥2 ≤ G .

� Starting radius: ∥x∗ − x(0)∥2 ≤ R.

Gradient descent:

� Choose number of steps T .

� Starting point x(0). E.g. x(0) = 0⃗.

� η = R
G
√
T

� For i = 0, . . . ,T :

� x(i+1) = x(i) − η∇f (x(i))

� Return x̂ = argminx(i) f (x
(i)).
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GRADIENT DESCENT ANALYSIS

Theorem (GD Convergence Bound)

If we run gradient descent for at least T ≥ R2G2

ϵ2
iterations, with

step size η = R
G
√
T
, then

f (x̂) ≤ f (x∗) + ϵ
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BEYOND THE BASIC BOUND

Can our convergence bound be tightened for certain functions?

Can it guide us towards faster algorithms?

Goals:

� Improve ϵ dependence below 1/ϵ2.

� Ideally 1/ϵ or log(1/ϵ).

� Reduce or eliminate dependence on G and R.
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SMOOTHNESS

Definition (β-smoothness)

A function f is β smooth if, for all x, y

∥∇f (x)−∇f (y)∥2 ≤ β∥x− y∥2

After some calculus (see Lem. 3.4 in Bubeck’s book), this

implies:
[f (y)− f (x)]−∇f (x)T (y − x) ≤ β

2
∥x− y∥22

For a scalar valued function f , equivalent to f ′′(x) ≤ β.
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CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)

Let f be a β smooth convex function and assume we have

∥x∗ − x(1)∥2 ≤ R. If we run GD for T steps with η = 1
β we have:

f (x(T ))− f (x∗) ≤ 2βR2

T

Corollary: If T = O
(
βR2

ϵ

)
we have f (x(T ))− f (x∗) ≤ ϵ.

Complete proof in Theorem 3.5 of Bubeck’s book
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STRONG CONVEXITY

Definition (α-strongly convex)

A convex function f is α-strongly convex if, for all x, y

[f (y)− f (x)]−∇f (x)T (y − x) ≥ α

2
∥x− y∥22

α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f , equivalent to

f ′′(x) ≥ α.
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CONVERGENCE GUARANTEE

Theorem (GD convergence for α-strongly convex functions.)

Let f be an α-strongly convex function and assume we have that,

for all x, ∥∇f (x)∥2 ≤ G . If we run GD for T steps (with adaptive

step sizes) we have:

f (x̂)− f (x∗) ≤ 2G 2

α(T − 1)

Corollary: If T = O
(
G2

αϵ

)
we have f (x̂)− f (x∗) ≤ ϵ
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SMOOTH AND STRONGLY CONVEX

Theorem (GD for β-smooth, α-strongly convex.)

Let f be a β-smooth and α-strongly convex function. If we run

GD for T = O
(
β
α log(Rβ

ϵ )
)
steps (with step size η = 1

β ) we have:

f (x(T ))− f (x∗) ≤ ϵ

κ = β
α is called the “condition number” of f .

Is it better if κ is large or small?
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = ∇2f (x) contain all of its second derivatives at a

point x. So H ∈ Rd×d . We have:

Hi ,j =
[
∇2f (x)

]
i ,j

=
∂2f

∂xixj
.

For vector x, v:

∇f (x+ tv) ≈ ∇f (x) + t
[
∇2f (x)

]
v.
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = ∇2f (x) contain all of its second derivatives at a

point x. So H ∈ Rd×d . We have:

Hi ,j =
[
∇2f (x)

]
i ,j

=
∂2f

∂xixj
.

Example: Let f (x) = ∥Ax− b∥22. Recall that
∇f (x) = 2AT (Ax− b).

12



HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if

the matrix H = ∇2f (x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H ∈ Rd×d is positive semidefinite

(PSD) for any vector y ∈ Rd , yTHy ≥ 0.

This is a natural notion of “positivity” for symmetric matrices. To

denote that H is PSD we will typically use “Loewner order”

notation (\succeq in LaTex):

H ⪰ 0.

We write B ⪰ A or equivalently A ⪯ B to denote that (B− A) is

positive semidefinite. This gives a partial ordering on matrices.
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EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued

eigendecomposition.

Here V is square and orthogonal, so VTV = VVT = I. And for

each vi , we have:

Hvi = λivi .

By definition, that’s what makes v1, . . . , vd eigenvectors.
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FACTS ABOUT PSD MATRICES

Theorem

Let H ∈ Rn×n be a symmetric matrix. Then H is PSD if and only

if λi (H) ≥ 0 for all its eigenvalues λi (H) with i = 1, 2, . . . , n.
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FACTS ABOUT PSD MATRICES

Theorem

Let H ∈ Rn×n be a symmetric matrix. Then H is PSD if and

only if H = VTV for some matrix V ∈ Rn×n.
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if

the matrix H = ∇2f (x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H ∈ Rd×d is positive semidefinite

(PSD) for any vector y ∈ Rd , yTHy ≥ 0.

For the least squares regression loss function: f (x) = ∥Ax− b∥22,
H = ∇2f (x) = 2ATA for all x. Is H PSD?
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EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: αI ⪯ H ⪯ βI ⇔ α ≤ λ1, ..., λd ≤ β.
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THE LINEAR ALGEBRA OF CONDITIONING

If f is β-smooth and α-strongly convex then at any point x,

H = ∇2f (x) satisfies:

αId×d ⪯ H ⪯ βId×d ,

where Id×d is a d × d identity matrix.

This is the natural matrix generalization of the statement for scalar

valued functions:

α ≤ f ′′(x) ≤ β.
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SMOOTH AND STRONGLY CONVEX HESSIAN

αId×d ⪯ H ⪯ βId×d .

Equivalently for any z,

α∥z∥22 ≤ zTHz ≤ β∥z∥22.
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SIMPLE EXAMPLE

Let f (x) = ∥Dx− b∥22 where D is a diagaonl matrix. For now

imagine we’re in two dimensions: x =

[
x1

x2

]
, D =

[
d1 0

0 d2

]
.

What are α, β for this problem?

α∥z∥22 ≤ zTHz ≤ β∥z∥22
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GEOMETRIC VIEW

Level sets of ∥Dx− b∥22 when d2
1 = 1, d2

2 = 1.
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GEOMETRIC VIEW

Level sets of ∥Dx− b∥22 when d2
1 = 1

3 , d
2
2 = 2.
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EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

In other words, if we let λmax(H) and λmin(H) be the smallest and

largest eigenvalues of H, then for all z we have:

zTHz ≤ λmax(H) · ∥z∥2

zTHz ≥ λmin(H) · ∥z∥2
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EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = ∇2f (x) = β and the minimum

eigenvalue of H = ∇2f (x) = α then f (x) is β-smooth and

α-strongly convex.

λmax(H) = β

λmin(H) = α
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PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Theorem (GD for β-smooth, α-strongly convex.)

Let f (x) = ∥Ax− b∥22, where αI ≤ 2AAT ≤ βI. Then f is

β-smooth and α-strongly , and if we run GD for

T = O
(
β
α log(Rβ

ϵ )
)
steps (with step size η = 1

β ) we have:

f (x(T ))− f (x∗) ≤ ϵ
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PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Given A ∈ Rn×d , let V ∈ Rn×d be any matrix with the same

column span as A. Then

min
x

∥Ax − b∥2 = min
x

∥Vx − b∥2

27



SINGULAR VALUE DECOMPOSITION

Quick reminder of the SVD:

Theorem (SVD)

Let A ∈ Rn×d be a rank r ≤ min{n, d} matrix. Then A can be

decomposed into A = UΣVT , where the columns of U ∈ Rn×r

are the left singular vectors of A, the rows of VT are the right

singular vectors of A, and Σ ∈ Rr×r is a diagonal matrix with

Σi ,i = σi is the i-th singular value of Σ

� Recall, the singular values {σi}i∈[r ] are the square roots of the

eigenvalues of D = ATAT , i.e. {λi (D)}i∈[r ].
� Note that UTU = Ir = VVT , since U and V have orthogonal

columns.
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SINGULAR VALUE DECOMPOSITION

Quick reminder of the SVD:

Theorem (SVD)

Let A ∈ Rn×d be a rank r ≤ min{n, d} matrix. Then A can be

decomposed into A = UΣVT , where the columns of U ∈ Rn×r

are the left singular vectors of A, the rows of VT are the right

singular vectors of A, and Σ ∈ Rr×r is a diagonal matrix with

Σi ,i = σi is the i-th singular value of Σ

� Recall, the singular values {σi}i∈[r ] are the square roots of the

eigenvalues of D = ATAT , i.e. {λi (D)}i∈[r ].
� Note that UTU = Ir = VVT , since U and V have orthogonal

columns.

� Can compute the SVD in O(min{nd2, dn2}) time.
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PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Given A ∈ Rn×d , let V ∈ Rn×d be any matrix with the same

column span as A. Then

min
x

∥Ax − b∥2 = min
x

∥Vx − b∥2

Can choose V to be a well-conditioned matrix which spans the

columns of A

� Can choose V ∈ Rn×d to be the left singular vectors of A.

� Singular vectors are orthogonal, so VTV = Id .

� ∇2f (x) = 2VTV = 2Id , thus κ = 1!
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