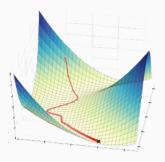
CS-GY 6763: LECTURE 6 GRADIENT DESCENT AND PROJECTED GRADIENT DESCENT

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

GRADIENT DESCENT

Gradient descent: A greedy algorithm for minimizing functions of multiple variables that often works amazingly well.



(and sometimes we can prove it works)

GRADIENT DESCENT ANALYSIS

Assume:

- f is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(0)}\|_2 \leq R$.

Gradient descent:

- Choose number of steps T.
- Starting point $\mathbf{x}^{(0)}$. E.g. $\mathbf{x}^{(0)} = \vec{0}$.
- $\eta = \frac{R}{G\sqrt{T}}$
- For i = 0, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

GRADIENT DESCENT ANALYSIS

Theorem (GD Convergence Bound)

If we run gradient descent for at least $T \geq \frac{R^2G^2}{\epsilon^2}$ iterations, with step size $\eta = \frac{R}{G\sqrt{T}}$, then

$$f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$$

BEYOND THE BASIC BOUND

Can our convergence bound be tightened for certain functions? Can it guide us towards faster algorithms?

Goals:

- Improve ϵ dependence below $1/\epsilon^2$.
 - Ideally $1/\epsilon$ or $\log(1/\epsilon)$.
- Reduce or eliminate dependence on G and R.

SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if, for all \mathbf{x} , \mathbf{y}

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \frac{\beta}{\beta} \|\mathbf{x} - \mathbf{y}\|_2$$

After some calculus (see Lem. 3.4 in **Bubeck's book**), this implies: $[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$

For a scalar valued function f, equivalent to $f''(x) \leq \beta$.

CONVERGENCE GUARANTEE

Theorem (GD convergence for β -smooth functions.)

Let f be a $\frac{\beta}{\beta}$ smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \leq \epsilon$.

Complete proof in Theorem 3.5 of Bubeck's book

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all \mathbf{x} , \mathbf{y}

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \ge \frac{\alpha}{2} ||\mathbf{x} - \mathbf{y}||_2^2$$

 α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent to $f''(x) \ge \alpha$.

CONVERGENCE GUARANTEE

Theorem (GD convergence for α -strongly convex functions.)

Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq G$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha(T-1)}$$

Corollary: If
$$T = O\left(\frac{G^2}{\alpha \epsilon}\right)$$
 we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

SMOOTH AND STRONGLY CONVEX

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for $T = O\left(\frac{\beta}{\alpha}\log(\frac{R\beta}{\epsilon})\right)$ steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of f.

Is it better if κ is large or small?

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $\mathbf{H} = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x}) \right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

For vector \mathbf{x}, \mathbf{v} :

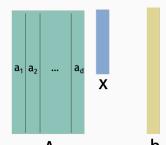
$$\nabla f(\mathbf{x} + t\mathbf{v}) \approx \nabla f(\mathbf{x}) + t \left[\nabla^2 f(\mathbf{x}) \right] \mathbf{v}.$$

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $\mathbf{H} = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x}) \right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

Example: Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Recall that $\nabla f(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b})$.



HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is positive semidefinite (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \geq 0$.

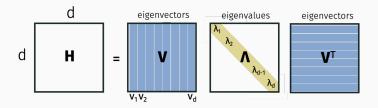
This is a natural notion of "positivity" for symmetric matrices. To denote that **H** is PSD we will typically use "Loewner order" notation (\succeq in LaTex):

$$\mathbf{H} \succeq 0$$
.

We write $\mathbf{B} \succeq \mathbf{A}$ or equivalently $\mathbf{A} \preceq \mathbf{B}$ to denote that $(\mathbf{B} - \mathbf{A})$ is positive semidefinite. This gives a <u>partial ordering</u> on matrices.

EIGENDECOMPOSITION VIEW

Any symmetric matrix ${\bf H}$ has an <u>orthogonal</u>, real valued eigendecomposition.



Here V is square and orthogonal, so $V^TV = VV^T = I$. And for each v_i , we have:

$$\mathbf{H}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$
.

By definition, that's what makes $\mathbf{v}_1, \dots, \mathbf{v}_d$ eigenvectors.

FACTS ABOUT PSD MATRICES

Theorem

Let $\mathbf{H} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then \mathbf{H} is PSD if and only if $\lambda_i(\mathbf{H}) \geq 0$ for all its eigenvalues $\lambda_i(\mathbf{H})$ with i = 1, 2, ..., n.

FACTS ABOUT PSD MATRICES

Theorem

Let $\mathbf{H} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then \mathbf{H} is PSD if and only if $\mathbf{H} = \mathbf{V}^T \mathbf{V}$ for some matrix $\mathbf{V} \in \mathbb{R}^{n \times n}$.

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

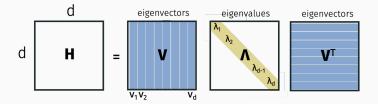
Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is positive semidefinite (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \geq 0$.

For the least squares regression loss function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, $\mathbf{H} = \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A}$ for all \mathbf{x} . Is \mathbf{H} PSD?

EIGENDECOMPOSITION VIEW

Recall
$$\mathbf{V}\mathbf{V}^T = \mathbf{V}^T\mathbf{V} = \mathbf{I}$$
.



Claim: $\alpha \mathbf{I} \leq \mathbf{H} \leq \beta \mathbf{I} \Leftrightarrow \alpha \leq \lambda_1, ..., \lambda_d \leq \beta$.

THE LINEAR ALGEBRA OF CONDITIONING

If f is β -smooth and α -strongly convex then at any point ${\bf x}$, ${\bf H}=\nabla^2 f({\bf x})$ satisfies:

$$\alpha \mathbf{I}_{d \times d} \leq \mathbf{H} \leq \beta \mathbf{I}_{d \times d}$$

where $\mathbf{I}_{d\times d}$ is a $d\times d$ identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions:

$$\alpha \leq f''(x) \leq \beta$$
.

SMOOTH AND STRONGLY CONVEX HESSIAN

$$\alpha \mathbf{I}_{d \times d} \leq \mathbf{H} \leq \beta \mathbf{I}_{d \times d}$$
.

Equivalently for any z,

$$\alpha \|\mathbf{z}\|_2^2 \leq \mathbf{z}^T \mathbf{H} \mathbf{z} \leq \beta \|\mathbf{z}\|_2^2.$$

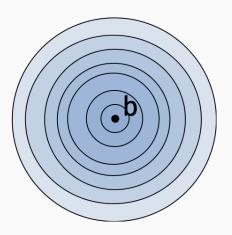
SIMPLE EXAMPLE

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where \mathbf{D} is a diagonal matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

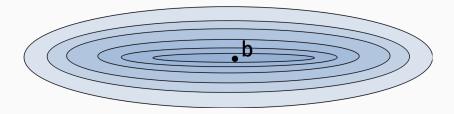
$$\|\mathbf{z}\|_{2}^{2} \leq \mathbf{z}^{T}\mathbf{H}\mathbf{z} \leq \beta \|\mathbf{z}\|_{2}^{2}$$

GEOMETRIC VIEW



Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = 1, d_2^2 = 1$.

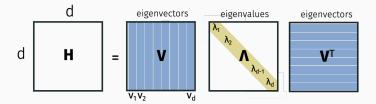
GEOMETRIC VIEW



Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = \frac{1}{3}, d_2^2 = 2$.

EIGENDECOMPOSITION VIEW

Recall
$$\mathbf{V}\mathbf{V}^T = \mathbf{V}^T\mathbf{V} = \mathbf{I}$$
.



In other words, if we let $\lambda_{max}(\mathbf{H})$ and $\lambda_{min}(\mathbf{H})$ be the smallest and largest eigenvalues of \mathbf{H} , then for all \mathbf{z} we have:

$$\mathbf{z}^T \mathbf{H} \mathbf{z} \leq \lambda_{\max}(\mathbf{H}) \cdot \|\mathbf{z}\|^2$$

 $\mathbf{z}^T \mathbf{H} \mathbf{z} \geq \lambda_{\min}(\mathbf{H}) \cdot \|\mathbf{z}\|^2$

EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \beta$ and the minimum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \alpha$ then $f(\mathbf{x})$ is β -smooth and α -strongly convex.

$$\lambda_{\mathsf{max}}(\mathbf{H}) = \beta$$
 $\lambda_{\mathsf{min}}(\mathbf{H}) = \alpha$

PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Theorem (GD for β -smooth, α -strongly convex.)

Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, where $\alpha \mathbf{I} \leq 2\mathbf{A}\mathbf{A}^T \leq \beta \mathbf{I}$. Then f is β -smooth and α -strongly , and if we run GD for $T = O\left(\frac{\beta}{\alpha}\log(\frac{R\beta}{\epsilon})\right)$ steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$

PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Given $\mathbf{A} \in \mathbb{R}^{n \times d}$, let $\mathbf{V} \in \mathbb{R}^{n \times d}$ be any matrix with the same *column span* as \mathbf{A} . Then

$$\min_{x} \|\mathbf{A}x - b\|_2 = \min_{x} \|\mathbf{V}x - b\|_2$$

SINGULAR VALUE DECOMPOSITION

Quick reminder of the SVD:

Theorem (SVD)

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a rank $r \leq \min\{n, d\}$ matrix. Then \mathbf{A} can be decomposed into $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, where the columns of $\mathbf{U} \in \mathbb{R}^{n \times r}$ are the left singular vectors of \mathbf{A} , the rows of \mathbf{V}^T are the right singular vectors of \mathbf{A} , and $\mathbf{\Sigma} \in \mathbb{R}^{r \times r}$ is a diagonal matrix with $\mathbf{\Sigma}_{i,i} = \sigma_i$ is the i-th singular value of $\mathbf{\Sigma}$

- Recall, the singular values $\{\sigma_i\}_{i\in[r]}$ are the square roots of the eigenvalues of $\mathbf{D} = \mathbf{A}^T \mathbf{A}^T$, i.e. $\{\lambda_i(\mathbf{D})\}_{i\in[r]}$.
- Note that $\mathbf{U}^T\mathbf{U} = \mathbf{I}_r = \mathbf{V}\mathbf{V}^T$, since \mathbf{U} and \mathbf{V} have orthogonal columns.

SINGULAR VALUE DECOMPOSITION

Quick reminder of the SVD:

Theorem (SVD)

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a rank $r \leq \min\{n, d\}$ matrix. Then \mathbf{A} can be decomposed into $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, where the columns of $\mathbf{U} \in \mathbb{R}^{n \times r}$ are the left singular vectors of \mathbf{A} , the rows of \mathbf{V}^T are the right singular vectors of \mathbf{A} , and $\mathbf{\Sigma} \in \mathbb{R}^{r \times r}$ is a diagonal matrix with $\mathbf{\Sigma}_{i,i} = \sigma_i$ is the i-th singular value of $\mathbf{\Sigma}$

- Recall, the singular values $\{\sigma_i\}_{i\in[r]}$ are the square roots of the eigenvalues of $\mathbf{D} = \mathbf{A}^T \mathbf{A}^T$, i.e. $\{\lambda_i(\mathbf{D})\}_{i\in[r]}$.
- Note that $\mathbf{U}^T\mathbf{U} = \mathbf{I}_r = \mathbf{V}\mathbf{V}^T$, since \mathbf{U} and \mathbf{V} have orthogonal columns.
- Can compute the SVD in $O(\min\{nd^2, dn^2\})$ time.

PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Given $\mathbf{A} \in \mathbb{R}^{n \times d}$, let $\mathbf{V} \in \mathbb{R}^{n \times d}$ be any matrix with the same *column span* as \mathbf{A} . Then

$$\min_{x} \|\mathbf{A}x - b\|_2 = \min_{x} \|\mathbf{V}x - b\|_2$$

Can choose ${\bf V}$ to be a well-conditioned matrix which spans the columns of ${\bf A}$

- Can choose $\mathbf{V} \in \mathbb{R}^{n \times d}$ to be the left singular vectors of \mathbf{A} .
- Singular vectors are orthogonal, so $\mathbf{V}^T\mathbf{V} = \mathbf{I}_d$.
- $\nabla^2 f(x) = 2\mathbf{V}^T \mathbf{V} = 2\mathbf{I}_d$, thus $\kappa = 1!$