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GRADIENT DESCENT

Gradient descent: A greedy algorithm for minimizing functions of
multiple variables that often works amazingly well.

(and sometimes we can prove it works)



GRADIENT DESCENT ANALYSIS

Assume:

e f is convex.
e Lipschitz function: for all x, ||[Vf(x)|2 < G.
e Starting radius: ||x* — x|, < R.

Gradient descent:

e Choose number of steps T.

Starting point x(9). E.g. x(©) = 0.
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e Fori=0,...,T:

° x(i+1) = x(i) — an(x(’))

Return % = arg min, g f(x(").



GRADIENT DESCENT ANALYSIS

Theorem (GD Convergence Bound)
If we run gradient descent for at least T > R;Gz iterations, with

step size n = Giﬁ, then

F(R) < F(x*) + e



BEYOND THE BASIC BOUND

Can our convergence bound be tightened for certain functions?
Can it guide us towards faster algorithms?

Goals:
e Improve ¢ dependence below 1/¢2.

e Ideally 1/€ or log(1/€).

e Reduce or eliminate dependence on G and R.



SMOOTHNESS

Definition (3-smoothness)

A function f is [J smooth if, for all x, y

IVE(x) = VE(y)ll2 < Fllx = yll2

After some calculus (see Lem. 3.4 in Bubeck’s book), this

TP [£(y) — (] = VAOT(y =) < Gk — yIB

For a scalar valued function f, equivalent to f”(x) < §.


https://arxiv.org/pdf/1405.4980.pdf

CONVERGENCE GUARANTEE

Theorem (GD convergence for 5-smooth functions.)

Let f be a 7 smooth convex function and assume we have

|x* — x|y < R. If we run GD for T steps with 1 = % we have:

f(X(T)) _ f(X*) < 257/:\)2

Corollary: If we have f(x(T) — f(x*) <.

Complete proof in Theorem 3.5 of Bubeck’s book


https://arxiv.org/pdf/1405.4980.pdf

STRONG CONVEXITY

Definition (a-strongly convex)

A convex function f is a-strongly convex if, for all x, y

[F(y) = F001 = VF()T(y =) = 5 [1x— Il

« is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent to
f(x) > a.



CONVERGENCE GUARANTEE

Theorem (GD convergence for a-strongly convex functions.)
Let f be an a-strongly convex function and assume we have that,

for all x, |Vf(x)||2 < G. If we run GD for T steps (with adaptive
step sizes) we have:

2
()~ Fx) < s

Corollary: If we have f(X) — f(x*) < e



SMOOTH AND STRONGLY CONVEX

Theorem (GD for 3-smooth, a-strongly convex.)

Let f be a 5-smooth and «a-strongly convex function. If we run
GD for T = O (g Iog(@)) steps (with step size n = %) we have:

F(x(T) — F(x*) < e

is called the “condition number” of f.

Is it better if ~ is large or small?
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from RY — R. Let the
Hessian H = V2f(x) contain all of its second derivatives at a
point x. So H € R4 We have:

0f
H,',J' = [VZf(X)]i’j = 8X,'Xj.

For vector x, v:

VF(x+ tv) = VF(x) + t [Vf(x)] v.
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from RY — R. Let the
H = V?2f(x) contain all of its second derivatives at a
point x. So H € R4 We have:

2
Hj = [V*f(x)], = i

W oxix;

Example: Let f(x) = |[Ax — b||3. Recall that
Vf(x) = 2AT(Ax — b).

ai(dy| ... |Qg

12



HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = V2f(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9*9 is positive semidefinite
(PSD) for any vector y € R?, y"Hy > 0.

This is a natural notion of “positivity” for symmetric matrices. To
denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H > 0.

We write B = A or equivalently A < B to denote that (B — A) is
positive semidefinite. This gives a partial ordering on matrices.
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EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A AL
A
A

A Vg

Here V is square and orthogonal, so VIV = VVT = 1. And for
each v;, we have:

HV,‘ = )\,'V,'.

By definition, that's what makes vy, ..., vy eigenvectors.
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FACTS ABOUT PSD MATRICES

Theorem

Let H € R™" be a symmetric matrix. Then H is PSD if and only
if \i(H) > 0 for all its eigenvalues \;(H) with i =1,2,...,n.

ii5)



FACTS ABOUT PSD MATRICES

Theorem

Let H € R™" be a symmetric matrix. Then H is PSD if and
only if H =V TV for some matrix V € R"™".
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = V2f(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%? is positive semidefinite
(PSD) for any vector y € R, y"Hy > 0.

For the least squares regression loss function: f(x) = ||Ax — b||3,
H = V2f(x) = 2ATA for all x. Is H PSD?
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EIGENDECOMPOSITION VIEW

Recall VWT =VTV = 1.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A A\l
A
A

ViV, Vy

Claim: al <H <Al & a < )\, ..., \y < 5.
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THE LINEAR ALGEBRA OF CONDITIONING

If fis B-smooth and a-strongly convex then at any point x,
H = V?2f(x) satisfies:

algxg < H <X Blyxd,

where lgxq is a d X d identity matrix.

This is the natural matrix generalization of the statement for scalar

valued functions:

a<f’(x)<pB.
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SMOOTH AND STRONGLY CONVEX HESSIAN

algxg 2 H = Blyxq.
Equivalently for any z,

alz|3 < 2"Hz < §jzl3.
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SIMPLE EXAMPLE

Let f(x) = ||Dx — b||3 where D is a diagaonl matrix. For now
d 0

imagine we're in two dimensions: x = “ , D= ! .

X2 0 d2

What are «, 3 for this problem?

ol|||3 < z"Hz < §|z|13
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GEOMETRIC VIEW

Level sets of ||Dx — b||3 when d? = 1,d3 = 1.
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GEOMETRIC VIEW

Level sets of ||Dx — b||3 when d? = %, d3 =2.
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EIGENDECOMPOSITION VIEW

Recall VWT =VTV = 1.

d eigenvectors eigenvalues eigenvectors
M
A
d H = Vv A VT
A
A

A Vg

In other words, if we let \nmax(H) and A\pin(H) be the smallest and
largest eigenvalues of H, then for all z we have:

z"THz < Amax(H) - Hz||2
z"Hz > Amin(H) - HZH2
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EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = V2f(x) = 3 and the minimum
eigenvalue of H = V2f(x) = « then f(x) is S-smooth and
a-strongly convex.
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PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Theorem (GD for $-smooth, a-strongly convex.)

Let f(x) = ||Ax — b||3, where al < 2AAT < Bl. Then f is
B-smooth and «a-strongly , and if we run GD for
T=0 (g Iog(@)) steps (with step size n = %) we have:

F(x(T)) — f(x*) < e
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PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Given A € R™9 let V € R"™9 be any matrix with the same
column span as A. Then

min |[Ax — b||2 = min||Vx — b||2
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SINGULAR VALUE DECOMPOSITION

Quick reminder of the SVD:

Theorem (SVD)

Let A € R™ be a rank r < min{n, d} matrix. Then A can be
decomposed into A = UXV T, where the columns of U € R"™"
are the left singular vectors of A, the rows of VT are the right
singular vectors of A, and X € R"™*" s a diagonal matrix with
2;; = o; is the i-th singular value of X

e Recall, the singular values {c;}c[, are the square roots of the
eigenvalues of D = ATAT ie. {Xi(D)}icpn-
e Note that UTU =1, = VV', since U and V have orthogonal

columns.
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SINGULAR VALUE DECOMPOSITION

Quick reminder of the SVD:

Theorem (SVD)

Let A € R"™*9 be a rank r < min{n, d} matrix. Then A can be
decomposed into A = UXV T, where the columns of U € R™*"
are the left singular vectors of A, the rows of VT are the right
singular vectors of A, and X € R"™*" is a diagonal matrix with

2;; = o; is the i-th singular value of X

e Recall, the singular values {0;};c[, are the square roots of the
eigenvalues of D = ATAT ie. {\i(D)}ie-

e Note that UTU =1, = VV7, since U and V have orthogonal
columns.

e Can compute the SVD in O(min{nd?, dn?}) time.
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PRECONDITIONING FOR LEAST-SQUARES REGRESSION

Given A € R™9 let V € R"™9 be any matrix with the same
column span as A. Then

min |[Ax — b||2 = min||Vx — b||2

Can choose V to be a well-conditioned matrix which spans the
columns of A

e Can choose V € R™*9 to be the left singular vectors of A.

e Singular vectors are orthogonal, so VTV = I.

e V2f(x) =2VTV =21y, thus x = 1!
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