CS-GY 6763: Lecture 8 Online Gradient Decent, Online Learning

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

- Basics of Online Learning + Optimization.
- Introduction to Regret Analysis.
- Application to analyzing Stochastic Gradient Descent.
- The Experts Problem, and Multiplicative Weights Update Method.

ONLINE LEARNING

Many machine learning problems are solved in an <u>online</u> setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Image classification systems learn from mistakes over time (often based on user feedback).
- Content recommendation systems adapt to user behavior and clicks.

EXAMPLE

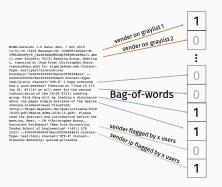
Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image is classified via crowdsourcing (backed by huge network of amateurs and experts).
- Single model that is updated constantly, not retrained in batches.

EXAMPLE

ML based email spam/scam filtering.



Markers for spam change overtime, so model might change.

EXAMPLE

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

ONLINE LEARNING FRAMEWORK

Choose some model $M_{\mathbf{x}}$ parameterized by parameters \mathbf{x} and some loss function ℓ . At time steps $1, \ldots, T$, receive data vectors $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(T)}$.

- At each time step, we pick ("play") a parameter vector $\mathbf{x}^{(i)}$.
- Make prediction $\tilde{y}^{(i)} = M_{\mathbf{x}^{(i)}}(\mathbf{a}_i)$.
- Then told true value or label $y^{(i)}$.
- · Goal is to minimize cumulative loss:

$$L = \sum_{i=1}^{n} \ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, y^{(i)})$$

For example, for a regression problem we might use the ℓ_2 loss:

$$\ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, y^{(i)}) = \left| \langle \mathbf{x}^{(i)}, \mathbf{a}^{(i)} \rangle - y^{(i)} \right|^2.$$

For classification, we could use logistic/cross-entropy loss.

ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single objective function f, we have multiple (initially unknown) functions $f_1, \ldots, f_T : \mathbb{R}^d \to \mathbb{R}$, one for each time step.

- For time step $i \in 1, ..., T$, select vector $\mathbf{x}^{(i)}$.
- Observe f_i and pay cost $f_i(\mathbf{x}^{(i)})$
- Goal is to minimize $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})$.

We make <u>no assumptions</u> that f_1, \ldots, f_T are related to each other at all!

REGRET BOUND

In offline optimization, we wanted to find $\hat{\mathbf{x}}$ satisfying $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x})$. Ask for a similar thing here.

Objective: Choose $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$ so that:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

Here ϵ is called the **regret** of our solution sequence $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$.

REGRET BOUND

Regret compares to the best fixed solution in hindsight.

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right] + \epsilon.$$

It's very possible that $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) < \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right]$. Could we hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\sum_{i=1}^{T} \min_{\mathbf{x}} f_i(\mathbf{x})\right] + \epsilon.$$

HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

$$f_1(x) = |x - h_1|$$

$$\vdots$$

$$f_n(x) = |x - h_T|$$

where h_1, \ldots, h_T are i.i.d. uniform $\{0, 1\}$.

REGRET BOUNDS

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

Beautiful balance:

- Either f_1, \ldots, f_T are similar, so we can learn predict f_i from earlier functions.
- Or f_1, \ldots, f_T are very different, in which case $\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ is large, so regret bound is easy to achieve.
- Or we live somewhere in the middle.

ONLINE GRADIENT DESCENT

Online Gradient descent:

- Choose $\mathbf{x}^{(1)}$ and $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 1, ..., T:
 - Play **x**⁽ⁱ⁾.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_i(\mathbf{x}^{(i)})$

If $f_1, \ldots, f_T = f$ are all the same, this looks a lot like regular gradient descent. We update parameters using the gradient ∇f at each step.

ONLINE GRADIENT DESCENT (OGD)

$$\mathbf{x}^* = \operatorname{arg\,min}_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$$
 (the offline optimum)

Assume:

- f_1, \ldots, f_T are all convex.
- Each is *G*-Lipschitz: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Online Gradient descent:

- Choose $\mathbf{x}^{(1)}$ and $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 1, ..., T:
 - Play x⁽ⁱ⁾.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_i(\mathbf{x}^{(i)})$

ONLINE GRADIENT DESCENT ANALYSIS

Let $\mathbf{x}^* = \arg\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ (the offline optimum)

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^T f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^T f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Average regret overtime is bounded by $\frac{\epsilon}{T} \leq \frac{RG}{\sqrt{T}}$.

Goes \rightarrow 0 as $T \rightarrow \infty$.

All this with no assumptions on how f_1, \ldots, f_T relate to each other! They could have even been chosen adversarially – e.g. with f_i depending on our choice of \mathbf{x}_i and all previous choices.

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^T f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^T f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Claim 1: For all i = 1, ..., T,

$$f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

(Same proof as previous class. Only uses convexity of f_i .)

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Claim 1: For all i = 1, ..., T,

$$f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

Telescoping Sum:

$$\sum_{i=1}^{T} \left[f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \right] \le \frac{\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{T\eta G^2}{2}$$
$$\le \frac{R^2}{2\eta} + \frac{T\eta G^2}{2} = RG\sqrt{T}$$

where last inequality follows from setting $\eta = \frac{R}{G\sqrt{T}}$.

STOCHASTIC GRADIENT DESCENT (SGD)

Efficient <u>offline</u> optimization method for functions f with <u>finite</u> sum structure:

$$f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x}).$$

Goal is to find $\hat{\mathbf{x}}$ such that $f(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon$.

- The most widely use optimization algorithm in modern machine learning.
- Easily analyzed as a special case of online gradient descent!

Recall the machine learning setup. In empirical risk minimization, we can typically write:

$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$$

where f_i is the loss function for a particular data example $(\mathbf{a}^{(i)}, y^{(i)})$.

Example: least squares linear regression.

$$f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{x}^{T} \mathbf{a}^{(i)} - y^{(i)})^{2}$$

Note that by linearity, $\nabla f(\mathbf{x}) = \sum_{i=1}^{n} \nabla f_i(\mathbf{x})$.

Main idea: Use random approximate gradient in place of actual gradient.

Pick random $j \in 1, ..., n$ and update **x** using $\nabla f_j(\mathbf{x})$.

$$\mathbb{E}\left[\nabla f_j(\mathbf{x})\right] = \frac{1}{n} \nabla f(\mathbf{x}).$$

 $n\nabla f_j(\mathbf{x})$ is an unbiased estimate for the true gradient $\nabla f(\mathbf{x})$, but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

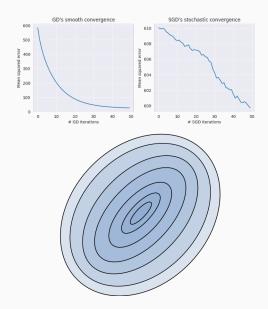
Stochastic first-order oracle for $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$.

- Function Query: For any chosen j, \mathbf{x} , return $f_i(\mathbf{x})$
- **Gradient Query:** For any chosen j, \mathbf{x} , return $\nabla f_j(\mathbf{x})$

Stochastic Gradient descent:

- Choose starting vector $\mathbf{x}^{(1)}$, learning rate η
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, n$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

VISUALIZING SGD



Assume:

- Finite sum structure: $f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x})$, with f_1, \dots, f_n all convex.
- Lipschitz functions: for all \mathbf{x} , j, $\|\nabla f_j(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
 - What does this imply about Lipschitz constant of f?
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Stochastic Gradient descent:

- Choose $\mathbf{x}^{(1)}$, steps T, learning rate $\eta = \frac{D}{G'\sqrt{T}}$.
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, n$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

Approach: View as online gradient descent run on function sequence f_{j_1}, \ldots, f_{j_T} .

Only use the fact that step equals gradient in expectation.

Claim (SGD Convergence)

After
$$T = \frac{R^2 G'^2}{\epsilon^2}$$
 iterations:

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \epsilon.$$

Want to first show:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \leq \frac{1}{T} \sum_{i=1}^{T} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right]$$

Jensen's Inequality: for any $\mathbf{x}_1, \dots, \mathbf{x}_t \in \mathbb{R}^d$, and coefficients $a_1, \dots, a_T \geq 0$, with $\sum_i a_i = 1$, if f is convex then

$$f\left(\sum_{i}a_{i}\mathbf{x}_{i}\right)\leq\sum_{i}a_{i}f\left(\mathbf{x}_{i}\right)$$

Jensen's Inequality: for any $\mathbf{x}_1, \dots, \mathbf{x}_t \in \mathbb{R}^d$, and coefficients $a_1, \dots, a_T \geq 0$, with $\sum_i a_i = 1$, if f is convex then

$$f\left(\sum_{i}a_{i}\mathbf{x}_{i}\right)\leq\sum_{i}a_{i}f\left(\mathbf{x}_{i}\right)$$

Using Jensen's:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) = f\left(\frac{1}{T}\sum_{i}\mathbf{x}^{(i)}\right) - \frac{1}{T}\sum_{i=1}^{T}f(\mathbf{x}^*)$$
$$\leq \frac{1}{T}\sum_{i=1}^{T}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right]$$

Claim (SGD Convergence)

After
$$T = \frac{R^2 G'^2}{\epsilon^2}$$
 iterations:
$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \le \epsilon.$$

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right]$$

$$= \frac{1}{T} \sum_{i=1}^{T} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$$

$$= \frac{n}{T} \cdot \mathbb{E}\left[\sum_{i=1}^{T} f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$$

$$\leq \frac{n}{T} \cdot \left(R \cdot \frac{G'}{n} \cdot \sqrt{T}\right) \qquad \text{(by OGD guarantee.)}$$

Number of iterations for error ϵ :

- Gradient Descent: $T = \frac{R^2 G^2}{\epsilon^2}$.
- Stochastic Gradient Descent: $T = \frac{R^2 G'^2}{\epsilon^2}$.

Always have $G \leq G'$. Follows by triangle inequality:

$$\max_{\mathbf{x}} \|\nabla f(\mathbf{x})\|_{2} \leq \max_{\mathbf{x}} (\|\nabla f_{1}(\mathbf{x})\|_{2} + \ldots + \|\nabla f_{n}(\mathbf{x})\|_{2}) \leq n \cdot \frac{G'}{n} = G'.$$

So GD converges strictly faster than SGD.

But for a fair comparison:

- SGD cost = $(\# \text{ of iterations}) \cdot O(1)$
- GD cost = (# of iterations) \cdot O(n)

We always have $G \leq G'$. When it is <u>much smaller</u> then GD will perform better. When it is closer to this upper bound, SGD will perform better.

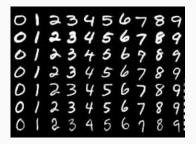
What is an extreme case where G = G'?

What if each gradient $\nabla f_i(\mathbf{x})$ looks like random vectors in \mathbb{R}^d ? E.g. with $\mathcal{N}(0,1)$ entries?

$$\mathbb{E}\left[\|\nabla f_i(\mathbf{x})\|_2^2\right] =$$

$$\mathbb{E}\left[\|\nabla f(\mathbf{x})\|_{2}^{2}\right] = \mathbb{E}\left[\left\|\sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})\right\|_{2}^{2}\right] =$$

Takeaway: SGD performs better when there is more structure or repetition in the data set.



Imagine we are trying to pick a good time to invest in a stock S.

- Each morning, we predict if the stock will go up or down.
- To aid us, we consult a team of *n* experts, who each predict either "up" or "down".
- Goal: Make a prediction each morning, so that # mistakes is not too much worse than the best expert.

Model: Days t = 1, 2, ..., T, experts $E_1, E_2, ..., E_n$.

- Each day t, every expert $E_i \in [n]$ makes a prediction $e_i^{(t)} \in \{0,1\}$ for whether stock will go up or down.
- We see the advice $e_1^{(t)},\dots,e_n^{(t)}$, and make a prediction $x^{(t)}\in\{0,1\}^n$.
- We then pay a cost $f_i(x^{(t)})$: $\{0,1\} \to \{0,1\}$ where f_i is 1 if we were incorrect, and 0 if we were correct.

Goal: want to minimize regret:

$$\sum_{i=1}^{T} f_i(x^{(i)}) - \min_{i \in [n]} \left(\sum_{i=1}^{T} f_i(e^{(i)}) \right)$$

Minimize Regret:

$$\sum_{i=1}^{T} f_i(x^{(i)}) - \min_{i \in [n]} \left(\sum_{i=1}^{T} f_i(e^{(i)}) \right)$$

- No assumptions at all on experts! The advice $e_1^{(t)}, \ldots, e_n^{(t)}$ can be arbitrarily correlated.
- Experts may or may not know what they are talking about.
- Stock movements can be arbitrary and adversarialy: i.e. the functions f_i can be adversarial based on $e_1^{(t)}, \ldots, e_n^{(t)}$ and all prior events!
- Still want to compete with best expert in hindsight.

First attempt, set
$$x^{(t)} = \text{Majority}(e_1^{(t)}, e_2^{(t)}, \dots, e_n^{(t)}).$$

What is wrong with this algorithm?

First attempt, set $x^{(t)} = \text{Majority}(e_1^{(t)}, e_2^{(t)}, \dots, e_n^{(t)}).$

What is wrong with this algorithm?

Suppose $e_i^{(t)}$ is always correct $(f_t(e_i^{(t)}) = 0$ for each $t \in [T]$), and all other experts give incorrect advice $e_j^{(t)}$. Majority is always wrong!

But we would notice that $e_i^{(t)}$ was doing well pretty quickly...

The more an expert is wrong, the less we should trust them!

Key idea: Give each expert E_i a weight w_i . Whenever E_i is wrong, *penalize them* by cutting their weight.

• Always choose the decision $x^{(t)} \in \{0,1\}$ which the *weighted majority* of experts agree with.

Key idea: Give each expert E_i a weight w_i . Whenever E_i is wrong, *penalize them* by cutting their weight.

• Always choose the decision $x^{(t)} \in \{0,1\}$ which the *weighted majority* of experts agree with.

MPW Algorithm: Fix "learning rate" $\eta \in (0, \frac{1}{2})$, initialize weights $w_i^{(1)} = 1$ for $i \in [n]$.

- 1. Set $W_0^{(t)} = \sum_{i,e_i^{(t)}=0} w_i^{(t)}$ and $W_1^{(t)} = \sum_{i,e_i^{(t)}=1} w_i^{(t)}$.
- 2. If $W_0^{(t)} > W_1^{(t)}$, set $x^{(t)} = 0$ otherwise set $x^{(t)} = 1$.
- 3. Observe $f_t(x^{(t)})$. Then for each incorrect expert E_i , set $w_i^{(t+1)} \leftarrow (1-\eta)w_i^{(t)}$.

Theorem

Fix any $\eta \in (0, \frac{1}{2})$. Let $m_i^{(T)}$ be the number mistakes made by expert E_i , and $M^{(t)}$ the number of mistakes the prior algorithm makes. Then for every $i \in [n]$, we have

$$M^{(T)} \le 2(1+\eta)m_i^{(T)} + \frac{2\ln n}{\eta}$$

Theorem

Fix any $\eta \in (0, \frac{1}{2})$. Let $m_i^{(T)}$ be the number mistakes made by expert E_i , and $M^{(t)}$ the number of mistakes the prior algorithm makes. Then for every $i \in [n]$, we have

$$M^{(T)} \le 2(1+\eta)m_i^{(T)} + \frac{2\ln n}{\eta}$$

Note: whenever the best expert i makes $m_i^{(T)} \gg \frac{2 \ln n}{\eta}$ mistakes, our algorithm is at most $\approx 2(1+\eta)m_i^{(T)}$ mistakes – nearly a 2-approx!

Proof: First note that $w_i^{(t+1)} = (1 - \eta)^{m_i^{(t)}}$ (why?).

Proof: First note that $w_i^{(t+1)} = (1 - \eta)^{m_i^{(t)}}$ (why?).

Potential function: let $\Phi^{(t)} = \sum_{i \in [n]} w_i^{(t)} = W_0^{(t)} + W_1^{(t)}$ be the total weight at time t. Note $\Phi^{(1)} = n$.

Each time we make a mistake, it must be that the *weighted* majority of experts were incorrect.

• I.e. if the correct answer was 0 and we choose $x^{(t)}=1$, then $W_1^{(t)}>W_0^{(t)}$, meaning $W_1^{(t)}\geq\Phi^{(t)}/2$, and then $W_1^{(t+1)}=(1-\eta)W_1^{(t)}$.

Thus, we have:

$$\Phi^{(t+1)} \le \frac{1}{2}\Phi^{(t)} + \frac{1}{2}(1-\eta)\Phi^{(t)} = (1-\frac{\eta}{2})\Phi^{(t)}$$

Summary: each time we make a mistake, the potential decreases by a factor of $(1 - \eta/2)$, namely, after each mistake

$$\Phi^{(t+1)} \leq (1 - \frac{\eta}{2})\Phi^{(t)}$$

Since $\Phi^{(1)} = n$, we have $\Phi^{(T+1)} \le n(1 - \frac{\eta}{2})^{M^{(T)}}$.

But we also have $\Phi^{(T)} > w_i^{(T+1)}$ for all i, so

$$n(1-\frac{\eta}{2})^{M^{(T)}} \ge w_i^{(t+1)} = (1-\eta)^{m_i^{(t)}}$$

Taking logarithms of both sides, and using that $-\ln(1-\eta) \le \eta + \eta^2$, we have the desired bound

$$M^{(T)} \le 2(1+\eta)m_i^{(T)} + \frac{2\ln n}{\eta}$$

Theorem

Let $m_i^{(T)}$ be the number mistakes made by expert E_i , and $M^{(t)}$ the number of mistakes the prior algorithm makes. Then for every $i \in [n]$, we have $M^{(T)} \leq 2(1+\eta)m_i^{(T)} + \frac{2\ln n}{\eta}$

Remark: This theorem can be generalized via a *randomized* update rule: choose each expert i with probability proportion to $w_i^{(t)}$. Note that this allows for multiple possible outputs (instead of two: $\{0,1\}$). One can show that, under this alternate rule, we have:

$$M^{(T)} \leq (1+\eta)m_i^{(T)} + \frac{\ln n}{\eta}$$

Details to be posted on course website.

MIDTERM STATS

Overall: very good!

Midterm: Out of 55 points:

Mean: 41.16 Median: 45 Std Dev: 12

75 percentile: 49.75 **25 percentile:** 31

Max: 55