CS-GY 6763: Lecture 8
Online Gradient Decent, Online Learning

NYU Tandon School of Engineering, Prof. Rajesh Jayaram



ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

e Basics of Online Learning + Optimization.

e Introduction to Regret Analysis.

e Application to analyzing Stochastic Gradient Descent.

e The Experts Problem, and Multiplicative Weights Update
Method.



ONLINE LEARNING

Many machine learning problems are solved in an online

setting with constantly changing data.

e Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

e Image classification systems learn from mistakes over time
(often based on user feedback).

e Content recommendation systems adapt to user behavior and
clicks.



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

1057 -

© e When the app fails, image is
classified via crowdsourcing
(backed by huge network of

o @ amateurs and experts).
o e Single model that is updated
constantly, not retrained in
s batches.
P o o



EXAMPLE

ML based email spam/scam filtering.

hristopher Musco
u.edu Content-

boundary="00000000000078ec240594568a53" --
00000000000078ac240: ot
toxt/plain; charset

Markers for spam change overtime, so model might change.



EXAMPLE

ML based email spam/scam filtering.

Re:SAFTY CORONA VIRUS AWARENESS WHO

{78 World Health
&}U Organization

Dear Sir,

Go through the atiached document on safety measures regarding the

Symptoms common symptoms include fever.coughcshortness of breath and
breathing difficultes.

Markers for spam change overtime, so model might change.



ONLINE LEARNING FRAMEWORK

Choose some model My parameterized by parameters x and some

loss function £. At time steps 1,..., T, receive data vectors
al) a(?l)
e .

At each time step, we pick (“play”) a parameter vector x().
Make prediction () = M (a;).

X

Then told true value or label y().
Goal is to minimize cumulative loss:

L= Zg(x(i),a(i)7y(i))
i=1

For example, for a regression problem we might use the ¢, loss:
2

o(xD, a0y = )<X(i),a<f>> _ 0

For classification, we could use logistic/cross-entropy loss.



ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have multiple (initially unknown) functions
fi,....fr : RY = R, one for each time step.

e Fortimestep i€ 1,..., T, select vector x(.
e Observe f; and pay cost f;(x())
e Goal is to minimize Y, fi(x().

We make no assumptions that fi, ..., fT are related to each other
at all!



REGRET BOUND

In offline optimization, we wanted to find X satisfying
f(X) < miny f(x). Ask for a similar thing here.

Objective: Choose x| ... x(7) so that:
T
Zf, x() < [mme
i=1
Here ¢ is called the regret of our solution sequence x(1), ... x(T).



REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T T
> ) < [mxin_Zﬁ(x>

i=1

It's very possible that 2, fi(x()) < {minX S f,-(x)] Could we
hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T

-
> i) < [Z min fi(x)
i=1

i=1

+ €.

10



HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

f(x) = |x — h|

fa(x) = |x — h1]

where hy, ..., ht arei.i.d. uniform {0,1}.

11



REGRET BOUNDS

Beautiful balance:

e Either f1,..., fr are similar, so we can learn predict f; from

earlier functions.

e Or fi,..., fr are very different, in which case miny 217;1 fi(x)
is large, so regret bound is easy to achieve.

e Or we live somewhere in the middle.

12



ONLINE GRADIENT DESCENT

Online Gradient descent:

e Choose x() and n = %ﬁ'

e Fori=1,...,T:
e Play x().
e Observe f; and incur cost f;(x()).
o x(*D) = x() _ pvfi(x()

If f1,...,fr = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient Vf at

each step.

13



ONLINE GRADIENT DESCENT (OGD)

x* = argmin, .| fi(x) (the offline optimum)
Assume:

e fi,...,fr are all convex.
e Each is G-Lipschitz: for all x, i, ||Vfi(x)|l2 < G.
e Starting radius: ||x* — x|y < R.

Online Gradient descent:

e Choose x() and n = —R_.

GVT
e Fori=1,...,T:
e Play x(.
e Observe f; and incur cost f;(x()).
o x(+1) = x() _ v (x())

14



ONLINE GRADIENT DESCENT ANALYSIS

Let x* = argmin, 3./, fi(x) (the offline optimum)
Theorem (OGD Regret Bound)
After T steps, € = [Z;’;l f;(x(i))] - [Z,Tﬂ f,'(x*)} < RGVT.

Average regret overtime is bounded by + < %.

Goes —+ 0 as T — oo.
All this with no assumptions on how fi,..., fr relate to each

other! They could have even been chosen adversarially — e.g.
with f; depending on our choice of x; and all previous choices.

ii5)



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, € = [Z,Tzl f;(x(i))] - [le f,'(x*)} < RGVT.

Claim 1: Foralli=1,..., T,

(1) _ w*[12 _ (|5 (i+1) _ o*)2 2
IO =X = %D = x5 06

(x(DY — £i(x*
xD) - f(x) o >

(Same proof as previous class. Only uses convexity of f;.)

16



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, € = [Z,Tzl ﬁ(x(i))] - [Z,Tzl f,-(x*)} < RGVT.

Claim 1: Foralli=1,..., T,
|2 i+1 |2 2
f;.(())if( ) < ||X( X”2—|’X(+)—XH2+77G

2n 2
Telescoping Sum:

T (1) |2 2
My _ I = xflp = D — x| T0G
> [(x?) = fi(x")] < = =

17



STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite

sum structure:

Goal is to find X such that f(X) < f(x*) +e.

e The most widely use optimization algorithm in modern
machine learning.

e Easily analyzed as a special case of online gradient descent!

18



STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk minimization,
we can typically write:

f(x) =D fi(x)
i=1

where f; is the loss function for a particular data example
(a(), y ().

Example: least squares linear regression.
n . .
x) = D (xTal) - y 0y’
i=1

Note that by linearity, Vf(x) = >_" ; Vfi(x).

19



STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of actual
gradient.

Pick random j € 1,..., n and update x using Vfj(x).

E[VF(x)] = %Vf(x).

nVf;(x) is an unbiased estimate for the true gradient Vf(x), but
can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

20



STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) = -7 ; fi(x).

e Gradient Query: For any chosen j, x, return Vf;(x)
Stochastic Gradient descent:

e Choose starting vector x(1), learning rate 7
e Fori=1,...,T:

e Pick random j; € 1,...,n.

o x(t1l) — x(1) _ nVﬂ,(x(i))

c_ 1T (i
e Return X = + 5>, x(7)

21



VISUALIZING SGD

GD's smooth convergence SGD's stochastic convergence
500 610
500
608
E 400 5
2 2 606
S 300 ]
g % oos
€ 200 H
602
100
600
0
o 1 20 1 4 50 o 1 2 3 4 %
# GD iterations #5GD iterations

22



STOCHASTIC GRADIENT DESCENT

Assume:
e Finite sum structure: f(x) = >_"_, fi(x), with f1,...,f, all convex.
c

n’

e Lipschitz functions: for all x, j, ||[Vfj(x)]|2 <
e What does this imply about Lipschitz constant of 77
e Starting radius: ||x* — x|, < R.

Stochastic Gradient descent:
e Choose x(1), steps T, learning rate n =
e Fori=1,...,T:
e Pick random j; €1,...,n.
o xUt1l) — x() _ nVG,(X("))

e Return X = % Z,T:1 x()

D
G'VT’

Approach: View as online gradient descent run on function
sequence f;, ..., e

Only use the fact that step equals gradient in expectation. 23



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

2c2 . .
After T = Refl iterations:

E[f(X) — f(x*)] < .

Want to first show:

24



STOCHASTIC GRADIENT DESCENT ANALYSIS

Jensen’s Inequality: for any x1,...,x; € RY, and coefficients
ai,...,ar >0, with >, a; = 1, if f is convex then

f <Z a,-x,-) § Z a,-f(x;)

25



STOCHASTIC GRADIENT DESCENT ANALYSIS

Jensen’s Inequality: for any x1,...,x; € RY, and coefficients
ai,...,ar >0, with >, a; = 1, if f is convex then
f (Z a,-x,-> < Z a,-f(x,-)
i i

Using Jensen's:

26



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = R;G/Z iterations:
E[f(X) — f(x¥)] < e

27



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error €:

e Gradient Descent: T = Ri2G2.

e Stochastic Gradient Descent: T = Rzefa.

Always have G < G'. Follows by triangle inequality:

G/

max [[VF(x)l[2 < max ([[VA(x)[l2 + ... + [VE(x)][2) < n G

So GD converges strictly faster than SGD.
But for a fair comparison:

e SGD cost = (# of iterations) - O(1)
e GD cost = (# of iterations) - O(n)

28



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G < G’. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G'?

29



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient V;(x) looks like random vectors in R9?
E.g. with NV(0,1) entries?

E [|VA(x)II3] =

E [IVF(x)II3] =

]

30



(-
2
w
O
)
w
(@)
[
2
=
(@)
<
04
)
XL
o
<
2}
-
-
)
L
%
>
=
[
(%2}
<
L
O
o
=
n

Takeaway: SGD performs better when there is more structure or

repetition in the data set.

[ \] HiE%ﬂ‘ﬂEi
HA-EsEEE I
\HEENCEE TR
[N < | 3 ﬂ-ﬁ o |

N it S N S i S
0@ @ Mo
el ayrtctcd

-_—— — T, — — —

00QQQoo

31



Online Learning: Multiplicative Weights Algorithm



LEARNING WITH EXPERTS

Imagine we are trying to pick a good time to invest in a stock S.

e Each morning, we predict if the stock will go up or down.

e To aid us, we consult a team of n experts, who each predict
either "“up” or “down”.

e Goal: Make a prediction each morning, so that # mistakes is
not too much worse than the best expert.

_\.\ummmmml_mmm it \‘\:m HH’\, il \‘\ Mot

32



LEARNING WITH EXPERTS

Model: Days t =1,2,..., T, experts E1, Ep, ..., E,.

e Each day t, every expert E; € [n] makes a prediction
e,-(t) € {0,1} for whether stock will go up or down.

e We see the advice egt), R e,(,t), and make a prediction

x() € {0,1}".
e We then pay a cost f;(x(1)): {0,1} — {0,1} where f; is 1 if
we were incorrect, and 0 if we were correct.

Goal: want to minimize regret:

33



LEARNING WITH EXPERTS

Minimize Regret:

)
2 A0 —P;['s](Zf “)
(1) (1)

e No assumptions at all on experts! The advice e, 7,..., ep

can be arbitrarily correlated.
e Experts may or may not know what they are talking about.
e Stock movements can be arbitrary and adversarialy: i.e. the
functions f; can be adversarial based on eit), e e,(,t) and all
prior events!

e Still want to compete with best expert in hindsight.

34



LEARNING WITH EXPERTS

First attempt, set x(t) = Majority(eit), eét), o e,(,t)).

What is wrong with this algorithm?

85



LEARNING WITH EXPERTS

First attempt, set x(t) = Majority(e{t), eét), o e,(,t)).

What is wrong with this algorithm?

Suppose et is always correct (ft(e(t)) =0 for each t € [T]), and

i i
all other experts give incorrect advice ejt . Majority is always

wrong!

But we would notice that e,-(t) was doing well pretty quickly...

e The more an expert is wrong, the less we should trust them!

36



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Key idea: Give each expert E; a weight w;. Whenever E; is
wrong, penalize them by cutting their weight.

e Always choose the decision x(t) € {0,1} which the weighted
majority of experts agree with.

37



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Key idea: Give each expert E; a weight w;. Whenever E; is
wrong, penalize them by cutting their weight.

e Always choose the decision x(t) € {0,1} which the weighted
majority of experts agree with.

MPW Algorithm: Fix “learning rate” 7 € (0, %) initialize weights
1 _ ;
w; ' =1forie[n].

1. Set Wo(t) = Zhegt)zo W,-(t) and Wl(t) = Zi7e'(t):1 W,(t).
2. If Wo(t) > Wl(t), set x(t) = 0 otherwise set x(*) = 1.
3. Observe ft(x(t)). Then for each incorrect expert E;, set

w(t (1- n)wi(t).

1

38



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Theorem

Fix any n € (0, %) Let m,(T) be the number mistakes made by

expert E;, and M) the number of mistakes the prior algorithm
makes. Then for every i € [n], we have

2lnn
n

M) < 2(1 + n)m,(-T) +

39



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Theorem

Fix any n € (0, %) Let m,(T) be the number mistakes made by

expert E;, and M) the number of mistakes the prior algorithm
makes. Then for every i € [n], we have

2lnn
n

M) <201+ n)m! ) +

Note: whenever the best expert i makes m,(-T) > 2'7% mistakes,

our algorithm is at most ~ 2(1 + n)m; (T) mistakes — nearly a
2-approx!

40



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Proof: First note that w(' %) = (1- n)mgt) (why?).

i

41



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Proof: First note that w(' %) = (1- n)mgt) (why?).

i

1

total weight at time t. Note (1) = p.
Each time we make a mistake, it must be that the weighted

Potential function: let ®(*) = >ieln] w() = Wo(t) - Wl(t) be the

majority of experts were incorrect.

e l.e. if the correct answer was 0 and we choose x(t) = 1, then
Wl(t) > W(t), meaning Wl(t) > d>(t)/2, and then
Wit = (1 -y,

Thus, we have:

o) < Lo 4 21— ) = (1 - ﬁ)q)(t)

N -
N

42



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Summary: each time we make a mistake, the potential decreases
by a factor of (1 — 7/2), namely, after each mistake

o) < (1 — )¢(t)

Since @) = n, we have ®(7T+1) < n(1 — g)M(T)_

(T+1)

But we also have ®(7) > w for all 7, so

(t)
n(l - Q)M(T) > W'(tJrl) _ (1 . n)m[
Taking logarithms of both sides, and using that
—In(1 — ) < n+n?, we have the desired bound

21
M < 2(1 4 p)m(" + =1
n 43



THE MULTIPLICATIVE WEIGHTS ALGORITHM

Theorem

Let m,(-T) be the number mistakes made by expert Ej, and M(t)
the number of mistakes the prior algorithm makes. Then for
every i € [n], we have M(T) < 2(1 + n)ml(T) + 2'7%
Remark: This theorem can be generalized via a randomized
update rule: choose each expert i with probability proportion to
w,.(t). Note that this allows for multiple possible outputs (instead of
two: {0,1}). One can show that, under this alternate rule, we
have:

M) < (1+ n)mET) + Innn

Details to be posted on course website.

44



Midterm



MIDTERM STATS

Overall: very good!

Midterm: Out of 55 points:
Mean: 41.16

Median: 45

Std Dev: 12

75 percentile: 49.75

25 percentile: 31

Max: 55

45



