
CS-GY 6763: Lecture 8

Online Gradient Decent, Online Learning

NYU Tandon School of Engineering, Prof. Rajesh Jayaram
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ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

� Basics of Online Learning + Optimization.

� Introduction to Regret Analysis.

� Application to analyzing Stochastic Gradient Descent.

� The Experts Problem, and Multiplicative Weights Update

Method.
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ONLINE LEARNING

Many machine learning problems are solved in an online

setting with constantly changing data.

� Spam filters are incrementally updated and adapt as they see

more examples of spam over time.

� Image classification systems learn from mistakes over time

(often based on user feedback).

� Content recommendation systems adapt to user behavior and

clicks.
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EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

� When the app fails, image is

classified via crowdsourcing

(backed by huge network of

amateurs and experts).

� Single model that is updated

constantly, not retrained in

batches.
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EXAMPLE

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.
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EXAMPLE

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.
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ONLINE LEARNING FRAMEWORK

Choose some model Mx parameterized by parameters x and some

loss function ℓ. At time steps 1, . . . ,T , receive data vectors

a(1), . . . , a(T ).

� At each time step, we pick (“play”) a parameter vector x(i).

� Make prediction ỹ (i) = Mx(i)(ai ).

� Then told true value or label y (i).

� Goal is to minimize cumulative loss:

L =
n∑

i=1

ℓ(x(i), a(i), y (i))

For example, for a regression problem we might use the ℓ2 loss:

ℓ(x(i), a(i), y (i)) =
∣∣∣⟨x(i), a(i)⟩ − y (i)

∣∣∣2 .
For classification, we could use logistic/cross-entropy loss.
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ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single

objective function f , we have multiple (initially unknown) functions

f1, . . . , fT : Rd → R, one for each time step.

� For time step i ∈ 1, . . . ,T , select vector x(i).

� Observe fi and pay cost fi (x
(i))

� Goal is to minimize
∑T

i=1 fi (x
(i)).

We make no assumptions that f1, . . . , fT are related to each other

at all!
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REGRET BOUND

In offline optimization, we wanted to find x̂ satisfying

f (x̂) ≤ minx f (x). Ask for a similar thing here.

Objective: Choose x(1), . . . , x(T ) so that:

T∑
i=1

fi (x
(i)) ≤

[
min
x

T∑
i=1

fi (x)

]
+ ϵ.

Here ϵ is called the regret of our solution sequence x(1), . . . , x(T ).
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REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T∑
i=1

fi (x
(i)) ≤

[
min
x

T∑
i=1

fi (x)

]
+ ϵ.

It’s very possible that
∑T

i=1 fi (x
(i)) <

[
minx

∑T
i=1 fi (x)

]
. Could we

hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T∑
i=1

fi (x
(i)) ≤

[
T∑
i=1

min
x

fi (x)

]
+ ϵ.
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HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

f1(x) = |x − h1|
...

fn(x) = |x − hT |

where h1, . . . , hT are i.i.d. uniform {0, 1}.
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REGRET BOUNDS

T∑
i=1

fi (x
(i)) ≤

[
min
x

T∑
i=1

fi (x)

]
+ ϵ.

Beautiful balance:

� Either f1, . . . , fT are similar, so we can learn predict fi from

earlier functions.

� Or f1, . . . , fT are very different, in which case minx
∑T

i=1 fi (x)

is large, so regret bound is easy to achieve.

� Or we live somewhere in the middle.
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ONLINE GRADIENT DESCENT

Online Gradient descent:

� Choose x(1) and η = R
G
√
T
.

� For i = 1, . . . ,T :

� Play x(i).

� Observe fi and incur cost fi (x
(i)).

� x(i+1) = x(i) − η∇fi (x(i))

If f1, . . . , fT = f are all the same, this looks a lot like regular

gradient descent. We update parameters using the gradient ∇f at

each step.
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ONLINE GRADIENT DESCENT (OGD)

x∗ = argminx
∑T

i=1 fi (x) (the offline optimum)

Assume:

� f1, . . . , fT are all convex.

� Each is G -Lipschitz: for all x, i , ∥∇fi (x)∥2 ≤ G .

� Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Online Gradient descent:

� Choose x(1) and η = R
G
√
T
.

� For i = 1, . . . ,T :

� Play x(i).

� Observe fi and incur cost fi (x
(i)).

� x(i+1) = x(i) − η∇fi (x(i))
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ONLINE GRADIENT DESCENT ANALYSIS

Let x∗ = argminx
∑T

i=1 fi (x) (the offline optimum)

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi (x
(i))
]
−
[∑T

i=1 fi (x
∗)
]
≤ RG

√
T .

Average regret overtime is bounded by ϵ
T ≤

RG√
T
.

Goes → 0 as T →∞.

All this with no assumptions on how f1, . . . , fT relate to each

other! They could have even been chosen adversarially – e.g.

with fi depending on our choice of xi and all previous choices.
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi (x
(i))
]
−
[∑T

i=1 fi (x
∗)
]
≤ RG

√
T .

Claim 1: For all i = 1, . . . ,T ,

fi (x
(i))− fi (x

∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η
+

ηG 2

2

(Same proof as previous class. Only uses convexity of fi .)
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi (x
(i))
]
−
[∑T

i=1 fi (x
∗)
]
≤ RG

√
T .

Claim 1: For all i = 1, . . . ,T ,

fi (x
(i))− fi (x

∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η
+

ηG 2

2

Telescoping Sum:

T∑
i=1

[
fi (x

(i))− fi (x
∗)
]
≤ ∥x

(1) − x∗∥2 − ∥x(T ) − x∗∥22
2η

+
TηG 2

2

≤ R2

2η
+

TηG 2

2
= RG

√
T

where last inequality follows from setting η = R
G
√
T
. ■
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STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite

sum structure:

f (x) =
n∑

i=1

fi (x).

Goal is to find x̂ such that f (x̂) ≤ f (x∗) + ϵ.

� The most widely use optimization algorithm in modern

machine learning.

� Easily analyzed as a special case of online gradient descent!
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STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk minimization,

we can typically write:

f (x) =
n∑

i=1

fi (x)

where fi is the loss function for a particular data example

(a(i), y (i)).

Example: least squares linear regression.

f (x) =
n∑

i=1

(xTa(i) − y (i))2

Note that by linearity, ∇f (x) =
∑n

i=1∇fi (x).
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STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of actual

gradient.

Pick random j ∈ 1, . . . , n and update x using ∇fj(x).

E [∇fj(x)] =
1

n
∇f (x).

n∇fj(x) is an unbiased estimate for the true gradient ∇f (x), but
can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.
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STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f (x) =
∑n

i=1 fi (x).

� Function Query: For any chosen j , x, return fj(x)

� Gradient Query: For any chosen j , x, return ∇fj(x)

Stochastic Gradient descent:

� Choose starting vector x(1), learning rate η

� For i = 1, . . . ,T :

� Pick random ji ∈ 1, . . . , n.

� x(i+1) = x(i) − η∇fji (x(i))
� Return x̂ = 1

T

∑T
i=1 x

(i)
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VISUALIZING SGD
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STOCHASTIC GRADIENT DESCENT

Assume:

� Finite sum structure: f (x) =
∑n

i=1 fi (x), with f1, . . . , fn all convex.

� Lipschitz functions: for all x, j , ∥∇fj(x)∥2 ≤ G ′

n .

� What does this imply about Lipschitz constant of f ?

� Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Stochastic Gradient descent:

� Choose x(1), steps T , learning rate η = D
G ′

√
T
.

� For i = 1, . . . ,T :

� Pick random ji ∈ 1, . . . , n.

� x(i+1) = x(i) − η∇fji (x(i))

� Return x̂ = 1
T

∑T
i=1 x

(i)

Approach: View as online gradient descent run on function

sequence fj1 , . . . , fjT .

Only use the fact that step equals gradient in expectation. 23



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = R2G ′2

ϵ2
iterations:

E [f (x̂)− f (x∗)] ≤ ϵ.

Want to first show:

f (x̂)− f (x∗) ≤ 1

T

T∑
i=1

[
f (x(i))− f (x∗)

]
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Jensen’s Inequality: for any x1, . . . , xt ∈ Rd , and coefficients

a1, . . . , aT ≥ 0, with
∑

i ai = 1, if f is convex then

f

(∑
i

aixi

)
≤
∑
i

ai f (xi )
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Jensen’s Inequality: for any x1, . . . , xt ∈ Rd , and coefficients

a1, . . . , aT ≥ 0, with
∑

i ai = 1, if f is convex then

f

(∑
i

aixi

)
≤
∑
i

ai f (xi )

Using Jensen’s:

f (x̂)− f (x∗) = f

(
1

T

∑
i

x(i)

)
− 1

T

T∑
i=1

f (x∗)

≤ 1

T

T∑
i=1

[
f (x(i))− f (x∗)

]
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = R2G ′2

ϵ2 iterations:

E [f (x̂)− f (x∗)] ≤ ϵ.

E[f (x̂)− f (x∗)] ≤ 1

T

T∑
i=1

E
[
f (x(i))− f (x∗)

]
=

1

T

T∑
i=1

nE
[
fji (x

(i))− fji (x
∗)
]

=
n

T
· E

[
T∑
i=1

fji (x
(i))− fji (x

∗)

]

≤ n

T
·
(
R · G

′

n
·
√
T

)
(by OGD guarantee.)
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error ϵ:

� Gradient Descent: T = R2G2

ϵ2
.

� Stochastic Gradient Descent: T = R2G ′2

ϵ2
.

Always have G ≤ G ′. Follows by triangle inequality:

max
x
∥∇f (x)∥2 ≤ max

x
(∥∇f1(x)∥2 + . . .+ ∥∇fn(x)∥2) ≤ n · G

′

n
= G ′.

So GD converges strictly faster than SGD.

But for a fair comparison:

� SGD cost = (# of iterations) · O(1)

� GD cost = (# of iterations) · O(n)
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G ≤ G ′. When it is much smaller then GD will

perform better. When it is closer to this upper bound, SGD will

perform better.

What is an extreme case where G = G ′?
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient ∇fi (x) looks like random vectors in Rd?

E.g. with N (0, 1) entries?

E
[
∥∇fi (x)∥22

]
=

E
[
∥∇f (x)∥22

]
= E

∥∥∥∥∥
n∑

i=1

∇fi (x)

∥∥∥∥∥
2

2

 =
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure or

repetition in the data set.
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Online Learning: Multiplicative Weights Algorithm

31



LEARNING WITH EXPERTS

Imagine we are trying to pick a good time to invest in a stock S .

� Each morning, we predict if the stock will go up or down.

� To aid us, we consult a team of n experts, who each predict

either “up” or “down”.

� Goal: Make a prediction each morning, so that # mistakes is

not too much worse than the best expert.
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LEARNING WITH EXPERTS

Model: Days t = 1, 2, . . . ,T , experts E1,E2, . . . ,En.

� Each day t, every expert Ei ∈ [n] makes a prediction

e
(t)
i ∈ {0, 1} for whether stock will go up or down.

� We see the advice e
(t)
1 , . . . , e

(t)
n , and make a prediction

x (t) ∈ {0, 1}n.
� We then pay a cost fi (x

(t)) : {0, 1} → {0, 1} where fi is 1 if

we were incorrect, and 0 if we were correct.

Goal: want to minimize regret:

T∑
i=1

fi (x
(i))− min

i∈[n]

(
T∑
i=1

fi (e
(i))

)
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LEARNING WITH EXPERTS

Minimize Regret:

T∑
i=1

fi (x
(i))− min

i∈[n]

(
T∑
i=1

fi (e
(i))

)

� No assumptions at all on experts! The advice e
(t)
1 , . . . , e

(t)
n

can be arbitrarily correlated.

� Experts may or may not know what they are talking about.

� Stock movements can be arbitrary and adversarialy : i.e. the

functions fi can be adversarial based on e
(t)
1 , . . . , e

(t)
n and all

prior events!

� Still want to compete with best expert in hindsight.
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LEARNING WITH EXPERTS

First attempt, set x (t) = Majority(e
(t)
1 , e

(t)
2 , . . . , e

(t)
n ).

What is wrong with this algorithm?
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LEARNING WITH EXPERTS

First attempt, set x (t) = Majority(e
(t)
1 , e

(t)
2 , . . . , e

(t)
n ).

What is wrong with this algorithm?

Suppose e
(t)
i is always correct (ft(e

(t)
i ) = 0 for each t ∈ [T ]), and

all other experts give incorrect advice e
(t)
j . Majority is always

wrong!

But we would notice that e
(t)
i was doing well pretty quickly...

� The more an expert is wrong, the less we should trust them!
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Key idea: Give each expert Ei a weight wi . Whenever Ei is

wrong, penalize them by cutting their weight.

� Always choose the decision x (t) ∈ {0, 1} which the weighted

majority of experts agree with.
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Key idea: Give each expert Ei a weight wi . Whenever Ei is

wrong, penalize them by cutting their weight.

� Always choose the decision x (t) ∈ {0, 1} which the weighted

majority of experts agree with.

MPW Algorithm: Fix “learning rate” η ∈ (0, 12), initialize weights

w
(1)
i = 1 for i ∈ [n].

1. Set W
(t)
0 =

∑
i ,e

(t)
i =0

w
(t)
i and W

(t)
1 =

∑
i ,e

(t)
i =1

w
(t)
i .

2. If W
(t)
0 > W

(t)
1 , set x (t) = 0 otherwise set x (t) = 1.

3. Observe ft(x
(t)). Then for each incorrect expert Ei , set

w
(t+1)
i ← (1− η)w

(t)
i .
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Theorem

Fix any η ∈ (0, 12). Let m
(T )
i be the number mistakes made by

expert Ei , and M(t) the number of mistakes the prior algorithm

makes. Then for every i ∈ [n], we have

M(T ) ≤ 2(1 + η)m
(T )
i +

2 ln n

η
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Theorem

Fix any η ∈ (0, 12). Let m
(T )
i be the number mistakes made by

expert Ei , and M(t) the number of mistakes the prior algorithm

makes. Then for every i ∈ [n], we have

M(T ) ≤ 2(1 + η)m
(T )
i +

2 ln n

η

Note: whenever the best expert i makes m
(T )
i ≫ 2 ln n

η mistakes,

our algorithm is at most ≈ 2(1 + η)m
(T )
i mistakes – nearly a

2-approx!
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Proof: First note that w
(t+1)
i = (1− η)m

(t)
i (why?).
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Proof: First note that w
(t+1)
i = (1− η)m

(t)
i (why?).

Potential function: let Φ(t) =
∑

i∈[n] w
(t)
i = W

(t)
0 +W

(t)
1 be the

total weight at time t. Note Φ(1) = n.

Each time we make a mistake, it must be that the weighted

majority of experts were incorrect.

� I.e. if the correct answer was 0 and we choose x (t) = 1, then

W
(t)
1 > W

(t)
0 , meaning W

(t)
1 ≥ Φ(t)/2, and then

W
(t+1)
1 = (1− η)W

(t)
1 .

Thus, we have:

Φ(t+1) ≤ 1

2
Φ(t) +

1

2
(1− η)Φ(t) = (1− η

2
)Φ(t)
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Summary: each time we make a mistake, the potential decreases

by a factor of (1− η/2), namely, after each mistake

Φ(t+1) ≤ (1− η

2
)Φ(t)

Since Φ(1) = n, we have Φ(T+1) ≤ n(1− η
2 )

M(T )
.

But we also have Φ(T ) > w
(T+1)
i for all i , so

n(1− η

2
)M

(T ) ≥ w
(t+1)
i = (1− η)m

(t)
i

Taking logarithms of both sides, and using that

− ln(1− η) ≤ η + η2, we have the desired bound

M(T ) ≤ 2(1 + η)m
(T )
i +

2 ln n
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THE MULTIPLICATIVE WEIGHTS ALGORITHM

Theorem

Let m
(T )
i be the number mistakes made by expert Ei , and M(t)

the number of mistakes the prior algorithm makes. Then for

every i ∈ [n], we have M(T ) ≤ 2(1 + η)m
(T )
i + 2 ln n

η

Remark: This theorem can be generalized via a randomized

update rule: choose each expert i with probability proportion to

w
(t)
i . Note that this allows for multiple possible outputs (instead of

two: {0, 1}). One can show that, under this alternate rule, we

have:

M(T ) ≤ (1 + η)m
(T )
i +

ln n

η

Details to be posted on course website.
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Midterm
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MIDTERM STATS

Overall: very good!

Midterm: Out of 55 points:

Mean: 41.16

Median: 45

Std Dev: 12

75 percentile: 49.75

25 percentile: 31

Max: 55

45


