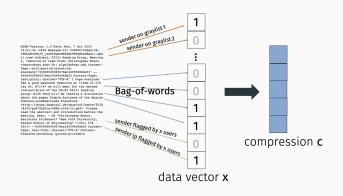
CS-GY 6763: Lecture 9 Low-rank approximation and singular value decomposition

NYU Tandon School of Engineering, Prof. Rajesh Jayaram

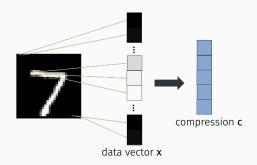
ADMINISTRATIVE

- Third reading group this Thursday at 4:30pm. Dennis and Jesse will present the paper: "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization"
- Hw 3 is due next Monday!
- Next two lectures: Spectral methods and Randomized Numerical Linear Algebra.
- ullet Afterwards, Teal will teach a lecture (4/18) on Compressed Sensing.

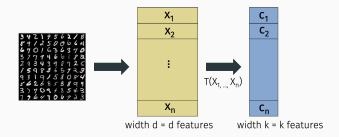
Return to data compression:



Return to data compression:



Main difference from randomized methods:



In this section, we will discuss <u>data dependent</u> transformations. Johnson-Lindenstrauss, MinHash, SimHash were all data oblivious.

Advantages of data independent methods:

Advantages of data dependent methods:

LINEAR ALGEBRA REMINDER

If a <u>square</u> matrix has orthonormal rows, it also have orthonormal columns:

$$V^TV = I = VV^T$$

Implies that for any vector \mathbf{x} , $\|\mathbf{V}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$ and $\|\mathbf{V}^T\mathbf{x}\|_2^2$.

Same thing goes for Frobenius norm: for any matrix \mathbf{X} , $\|\mathbf{V}\mathbf{X}\|_F^2 = \|\mathbf{X}\|_F^2$ and $\|\mathbf{V}^T\mathbf{X}\|_F^2 = \|\mathbf{X}\|_F^2$.

LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices:

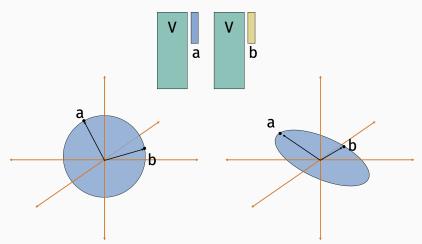
$$\begin{array}{|c|c|c|c|c|c|} \hline V^T & V & = & \begin{smallmatrix} 1_{1} \\ & 1_{1} \end{smallmatrix} & V & V^T & = & \begin{smallmatrix} .5 & -1 & .7 & -2 \\ 1.6 & -.44 & 4.2 & -1.5 \\ 7.8 & .42 & -5 & .67 \\ -2 & 2.0 & 1.1 & 8.0 \\ -1.5 & .55 & 3.2 & .5 \\ .67 & -2.8 & -2.4 & 1.6 \\ 9.0 & 8.7 & -7.7 & 7.8 \end{smallmatrix}$$

$$\mathbf{V}^T \mathbf{V} = \mathbf{I}$$
 but $\mathbf{V} \mathbf{V}^T \neq \mathbf{I}$

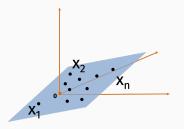
For any \mathbf{x} , $\|\mathbf{V}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2 \underline{\text{but}} \|\mathbf{V}^T\mathbf{x}\|_2^2 \neq \|\mathbf{x}\|_2^2$ in general.

LINEAR ALGEBRA REMINDER

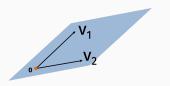
Multiplying a vector by \boldsymbol{V} with orthonormal columns $\underline{\text{rotates}}$ and/or reflects the vector.



Suppose $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ lie on a <u>low-dimensional</u> subspace S through the origin. I.e. our data set is <u>rank</u> k for k < d.

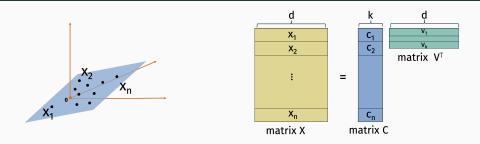


Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be orthogonal unit vectors spanning S.

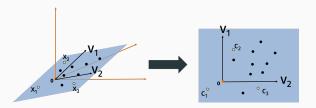


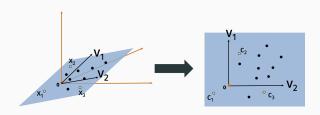
For all i, we can write:

$$\mathbf{x}_i = c_{i,1}\mathbf{v}_1 + \ldots + c_{i,k}\mathbf{v}_k.$$



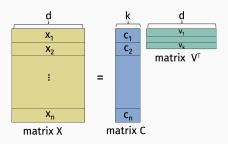
What are $\mathbf{c}_1, \dots, \mathbf{c}_n$?





Lots of information preserved:

- $\|\mathbf{x}_i \mathbf{x}_j\|_2 = \|\mathbf{c}_i \mathbf{c}_j\|_2$ for all i, j.
- $\mathbf{x}_i^T \mathbf{x}_j = \mathbf{c}_i^T \mathbf{c}_j$ for all i, j.
- Norms preserved, linear separability preserved, $\min \|\mathbf{X}\mathbf{y} \mathbf{b}\| = \min \|\mathbf{C}\mathbf{z} \mathbf{b}\|, \text{ etc., etc.}$



Formally, $\mathbf{C} = \mathbf{X} \mathbf{V}^T$:

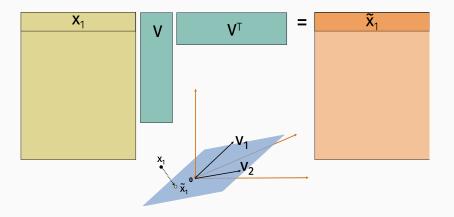
$$\mathbf{X} = \mathbf{C} \mathbf{V}^T \Rightarrow \mathbf{X} \mathbf{V} = \mathbf{C} \mathbf{V}^T \mathbf{V}$$

Since \mathbf{V} 's columns are an orthonormal basis, $\mathbf{V}^T\mathbf{V} = \mathbf{I}$.

So
$$X = XVV^T$$
.

PROJECTION MATRICES

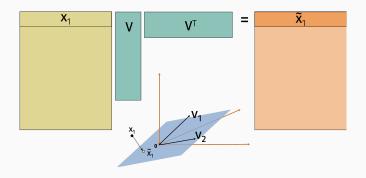
 $\mathbf{V}\mathbf{V}^T$ is a symmetric projection matrix.



When all data points already lie in the subspace spanned by \mathbf{V} 's columns, projection doesn't do anything. So $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^T$.

PROJECTION MATRICES

 $\mathbf{V}\mathbf{V}^T$ is a symmetric projection matrix.



 $\mathbf{x}_1^T \mathbf{V} \mathbf{V}^T$ is the projection of \mathbf{x}_1^T onto the subspace.

By pythagorean theorem, $\|\mathbf{x}_1^T - \mathbf{x}_1^T \mathbf{V} \mathbf{V}^T\|_2^2 = \|\mathbf{x}_1^T\|_2^2 - \|\mathbf{x}_1^2 \mathbf{V} \mathbf{V}^T\|_2^2$ and by apply to all rows, $\|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2$.

LOW-RANK APPROXIMATION

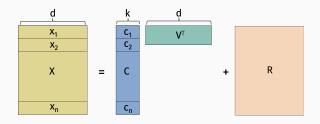
When X's rows lie <u>close</u> to a k dimensional subspace, we can still approximate

$$X \approx XVV^T$$
.

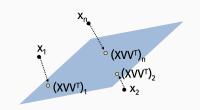
 XVV^T is a low-rank approximation for X.

For a given subspace $\mathcal V$ spanned by the columns in $\mathbf V$,

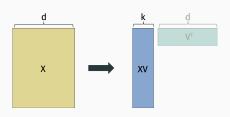
$$\mathbf{XVV}^T = \operatorname*{arg\,min}_{\mathbf{C}} \|\mathbf{X} - \mathbf{CV}^T\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{CV}^T)_{i,j})^2.$$



LOW-RANK APPROXIMATION



$$\|\mathbf{x}_i - \mathbf{x}_j\|_2 \approx \|\mathbf{x}_i^T \mathbf{V} \mathbf{V}^T - \mathbf{x}_j^T \mathbf{V} \mathbf{V}^T\|_2 = \|\mathbf{x}_i^T \mathbf{V} - \mathbf{x}_j^T \mathbf{V}\|_2$$

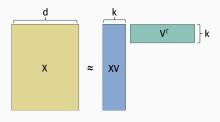


 ${f XV}$ can be used as a compressed version of data matrix ${f X}$.

WHY IS DATA APPROXIMATELY LOW-RANK?

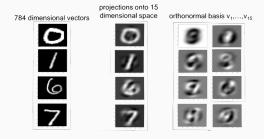
DUAL VIEW

Rows of \mathbf{X} (data points) are approximately spanned by k vectors. Columns of \mathbf{X} (data features) are approximately spanned by k vectors.



ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly rank k. If it has k "clusters" of data points (e.g. the 10 digits) it's often very close to rank k.



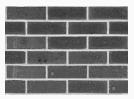
COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank data matrix.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	'	•	•	•		
•		•	•	•	•	•
					•	•
home n	5	3.5	3600	3	450,000	450,000

OTHER REASONS FOR LOW-RANK STRUCTURE

When encoded as a matrix, which image has lower approximate rank?



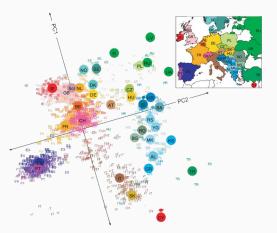
APPLICATIONS OF LOW-RANK APPROXIMATION



- **XV** · **V**^T takes O(k(n+d)) space to store instead of O(nd).
- Regression problems involving $\mathbf{X}\mathbf{V}\cdot\mathbf{V}^T$ can be solved in $O(nk^2)$ instead of $O(nd^2)$ time.
- **XV** can be used for visualization when k = 2, 3.

APPLICATIONS OF LOW-RANK APPROXIMATION

"Genes Mirror Geography Within Europe" - Nature, 2008.



Each data vector \mathbf{x}_i contains genetic information for one person in Europe. Set k=2 and plot $(XV)_i$ for each i on a 2-d plane. Color points by what country they are from.

COMPUTATIONAL QUESTION

Given a subspace V spanned by the k columns in V,

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \min_{\mathbf{C}} \|\mathbf{X} - \mathbf{C}\mathbf{V}^T\|_F^2$$

We want to find the best $\mathbf{V} \in \mathbb{R}^{d \times k}$:

$$\min_{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}} \| \mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T \|_F^2$$
 (1)

Note that $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ for all orthonormal \mathbf{V} (since $\mathbf{V}\mathbf{V}^T$ is a projection). Equivalent form:

$$\max_{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}} \| \mathbf{X} \mathbf{V} \mathbf{V}^T \|_F^2 = \| \mathbf{X} \mathbf{V} \|_F^2$$
 (2)

RANK 1 CASE

If k = 1, want to find a single vector \mathbf{v}_1 which maximizes:

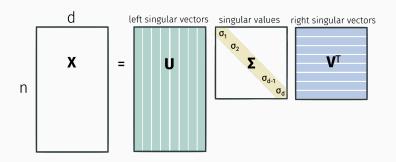
$$\|\boldsymbol{\mathsf{X}}\boldsymbol{\mathsf{v}}_1\boldsymbol{\mathsf{v}}_1^{\mathsf{T}}\|_{\mathit{F}}^2 = \|\boldsymbol{\mathsf{X}}\boldsymbol{\mathsf{v}}_1\|_{\mathit{F}}^2 = \|\boldsymbol{\mathsf{X}}\boldsymbol{\mathsf{v}}_1\|_2^2 = \boldsymbol{\mathsf{v}}_1^{\mathsf{T}}\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}}\boldsymbol{\mathsf{v}}_1.$$

Choose \mathbf{v}_1 to be the top eigenvector of $\mathbf{X}^T \mathbf{X}$.

What about higher k?

One-stop shop for computing optimal low-rank approximations.

Any matrix **X** can be written:



Where
$$\mathbf{U}^T\mathbf{U} = \mathbf{I}$$
, $\mathbf{V}^T\mathbf{V} = \mathbf{I}$, and $\sigma_1 \geq \sigma_2 \geq \dots \sigma_d \geq 0$.

Note that
$$\sum_{i=1}^{d} \sigma_i^2 = \|\mathbf{X}\|_F^2$$
.

CONNECTION TO EIGENDECOMPOSITION

- V_k 's columns are called the "top right singular vectors of X"
- \mathbf{U}_k 's columns are called the "top left singular vectors of \mathbf{X} "
- $\sigma_1, \ldots, \sigma_k$ are the "top singular values". $\sigma_1, \ldots, \sigma_d$ are sometimes called the "spectrum of **X**" (although this is more typically used to refer to eigenvalues).
- U contains the orthonormal eigenvectors of XX^T.
- **V** contains the orthonormal eigenvectors of $\mathbf{X}^T \mathbf{X}$.
- $\sigma_i^2 = \lambda_i(\mathbf{X}\mathbf{X}^T) = \lambda_i(\mathbf{X}^T\mathbf{X})$

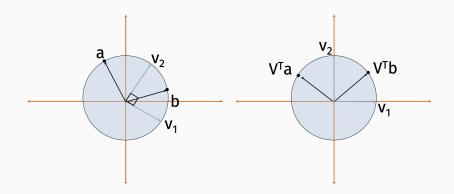
Exercise: Check this can be checked directly.

Important take away from singular value decomposition.

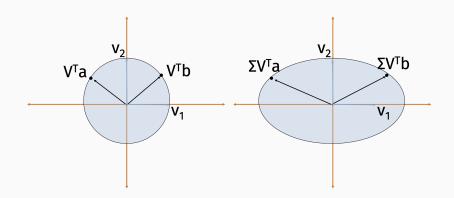
Multiplying any vector \mathbf{a} by a matrix \mathbf{X} to form $\mathbf{X}\mathbf{a}$ can be viewed as a composition of 3 operations:

- 1. Rotate/reflect the vector (multiplication by to \mathbf{V}^T).
- 2. Scale the coordinates (multiplication by Σ .
- 3. Rotate/reflect the vector again (multiplication by \mathbf{U}).

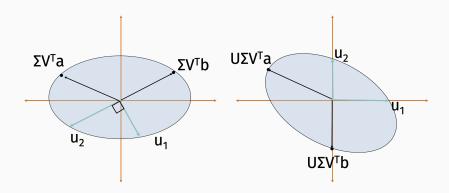
SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

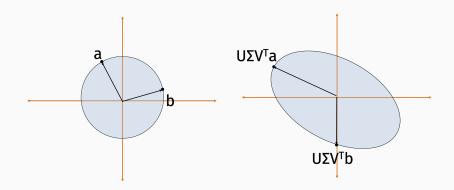


SINGULAR VALUE DECOMPOSITION: STRETCH

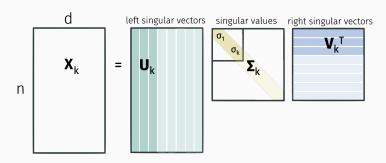


SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT





Can read off optimal low-rank approximations from the SVD:



$$\begin{aligned} \mathbf{X}_k &= \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T. \\ \mathbf{V}_k &= \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg min}} \| \mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T \|_F^2 = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \mathbf{V}^T \|_F^2 \end{aligned}$$

Theorem (Eckart–Young–Mirsky theorem)

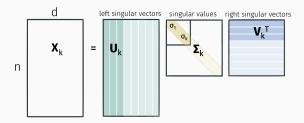
Let $\mathbf{X} \in \mathbb{R}^{n \times k}$ be any matrix, and let $\mathbf{X}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$ be the k-truncated SVD of \mathbf{A} . Then the best rank-k approximation to \mathbf{X} is \mathbf{X}_k . Namely:

$$\begin{aligned} \min_{\textit{rank-k}} & \|\mathbf{X} - \mathbf{B}\|_F^2 = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 \\ & = \|\mathbf{X} - \mathbf{X}_k\|_F^2 \end{aligned}$$

Connection to **Principal Component Analysis**:

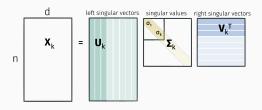
- Let $\bar{\mathbf{X}} = \mathbf{X} \mathbf{1}\boldsymbol{\mu}^T$ where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$. I.e. $\bar{\mathbf{X}}$ is obtained by mean centering \mathbf{X} 's rows.
- Let $\bar{\mathbf{U}}\bar{\mathbf{\Sigma}}\bar{\mathbf{V}}^T$ be the SVD of $\bar{\mathbf{X}}$. $\bar{\mathbf{U}}$'s first columns are the "top principal components" of \mathbf{X} . \mathbf{V} 's first columns are the "weight vectors" for these principal components.

USEFUL OBSERVATIONS



Observation 1: The optimal compression XV_k has orthogonal columns.

USEFUL OBSERVATIONS



Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$ can be written:

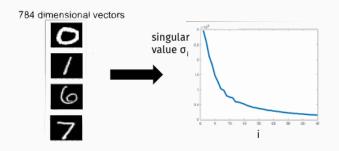
$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:



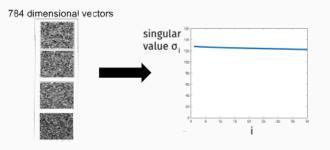
SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error

$$E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$$
 can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:



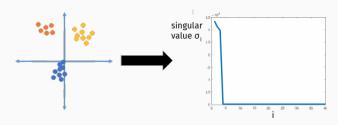
SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error

$$E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$$
 can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:



COMPUTING THE SVD

Suffices to compute right singular vectors \mathbf{V} :

- Compute **X**^T**X**.
- Find eigendecomposition $\mathbf{V} \mathbf{\Lambda} \mathbf{V}^T = \mathbf{X}^T \mathbf{X}$.
- Compute $\mathbf{L} = \mathbf{X}\mathbf{V}$. Set $\sigma_i = \|\mathbf{L}_i\|_2$ and $\mathbf{U}_i = \mathbf{L}_i/\|\mathbf{L}_i\|_2$.

Total runtime \approx

COMPUTING THE SVD (FASTER)

- Compute approximate solution.
- Only compute top k singular vectors/values. Runtime will depend on k. When k=d we can't do any better than classical algorithms based on eigendecomposition.
- Iterative algorithms achieve runtime $\approx O(ndk)$ vs. $O(nd^2)$ time.
 - Krylov subspace methods like the Lanczos method are most commonly used in practice.
 - Power method is the simplest Krylov subspace method, and still works very well.

What we won't discuss today: sketching methods and stochastic methods (which are faster in some settings).

POWER METHOD

Today: What about when k = 1?

Goal: Find some $\mathbf{z} \approx \mathbf{v}_1$.

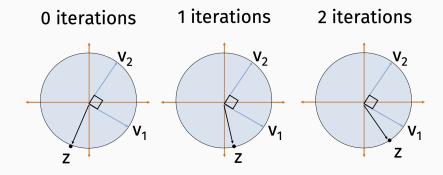
Input: $\mathbf{X} \in \mathbb{R}^{n \times d}$ with SVD $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

Power method:

- Choose $\mathbf{z}^{(0)}$ randomly. E.g. $\mathbf{z}_0 \sim \mathcal{N}(0,1)$.
- $\mathbf{z}^{(0)} = \mathbf{z}^{(0)} / \|\mathbf{z}^{(0)}\|_2$
- For $i = 1, \ldots, T$
 - $\mathbf{z}^{(i)} = \mathbf{X}^T \cdot (\mathbf{X}\mathbf{z}^{(i-1)})$
 - $n_i = \|\mathbf{z}^{(i)}\|_2$
 - $z^{(i)} = z^{(i)}/n_i$

Return $\mathbf{z}^{(T)}$

POWER METHOD INTUITION



POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the "gap" between the first and second largest singular values of a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$. If Power Method is initialized with a random Gaussian vector then, with high probability, after $T = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ steps, we have either:

$$\|\mathbf{v}_1 - \mathbf{z}^{(T)}\|_2 \le \epsilon$$
 or $\|\mathbf{v}_1 - (-\mathbf{z}^{(T)})\|_2 \le \epsilon$.

Total runtime: $O\left(nd \cdot \frac{\log d/\epsilon}{\gamma}\right)$

Refined runtime: $O\left(\operatorname{nnz}(\mathbf{X}) \cdot \frac{\log d/\epsilon}{\gamma}\right)$, where $\operatorname{nnz}(\mathbf{X})$ is the number of non-zero entries in \mathbf{X} .

ONE STEP ANALYSIS OF POWER METHOD

Write $\mathbf{z}^{(i)}$ in the right singular vector basis:

$$\mathbf{z}^{(0)} = c_1^{(0)} \mathbf{v}_1 + c_2^{(0)} \mathbf{v}_2 + \ldots + c_d^{(0)} \mathbf{v}_d$$

$$\mathbf{z}^{(1)} = c_1^{(1)} \mathbf{v}_1 + c_2^{(1)} \mathbf{v}_2 + \ldots + c_d^{(1)} \mathbf{v}_d$$

$$\vdots$$

$$\mathbf{z}^{(i)} = c_1^{(i)} \mathbf{v}_1 + c_2^{(i)} \mathbf{v}_2 + \ldots + c_d^{(i)} \mathbf{v}_d$$

Note:
$$[c_1^{(i)}, \dots, c_d^{(i)}] = \mathbf{c}^{(i)} = \mathbf{V}^\mathsf{T} \mathbf{z}^{(i)}$$
.

Also:
$$\sum_{j=1}^{d} (c_j^{(i)})^2 = 1.$$

ONE STEP ANALYSIS OF POWER METHOD

Claim: After update
$$\mathbf{z}^{(i)} = \frac{1}{n_i} \mathbf{X}^T \mathbf{X} \mathbf{z}^{(i-1)}$$
, $c_j^{(i)} = \frac{1}{n_i} \sigma_j^2 c_j^{(i-1)}$

$$\mathbf{z}^{(i)} = \frac{1}{n_i} \left[c_1^{(i-1)} \sigma_1^2 \cdot \mathbf{v}_1 + c_2^{(i-1)} \sigma_2^2 \cdot \mathbf{v}_2 + \ldots + c_d^{(i-1)} \sigma_d^2 \cdot \mathbf{v}_d \right]$$

MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After *T* updates:

$$\mathbf{z}^{(T)} = \frac{1}{\prod_{i=1}^{T} n_i} \left[c_1^{(0)} \sigma_1^{2T} \cdot \mathbf{v}_1 + c_2^{(0)} \sigma_2^{2T} \cdot \mathbf{v}_2 + \ldots + c_d^{(0)} \sigma_d^{2T} \cdot \mathbf{v}_d \right]$$

Let
$$\alpha_j = \frac{1}{\prod_{j=1}^T n_j} c_j^{(0)} \sigma_j^{2T}$$
. **Goal:** Show that $\alpha_j \ll \alpha_1$ for all $j \neq 1$.

POWER METHOD FORMAL CONVERGENCE

Since $\mathbf{z}^{(T)}$ is a unit vector, $\sum_{i=1}^{d} \alpha_i^2 = 1$. So $\alpha_1 \leq 1$.

If we can prove that $\frac{\alpha_j}{\alpha_1} \leq \sqrt{\frac{\epsilon}{d}}$ then:

$$\alpha_j^2 \le \alpha_1^2 \cdot \frac{\epsilon}{d}$$

$$1 = \alpha_1^2 + \sum_{j=2}^d \alpha_d^2 \le \alpha_1^2 + \epsilon$$

$$\alpha_1^2 \ge 1 - \epsilon$$

$$|\alpha_1| \ge 1 - \epsilon$$

$$\|\mathbf{v}_1 - \mathbf{z}^{(T)}\|_2 = 2 - 2\langle \mathbf{v}_1, \mathbf{z}^{(T)} \rangle \le 2\epsilon$$

POWER METHOD FORMAL CONVERGENCE

Lets proves that $\frac{\alpha_j}{\alpha_1} \leq \sqrt{\frac{\epsilon}{d}}$ where $\alpha_j = \frac{1}{\prod_{i=1}^T n_i} c_j^{(0)} \sigma_j^{2T}$

First observation: Starting coefficients are all roughly equal.

For all
$$j$$

$$O(1/d^3) \le c_j^{(0)} \le 1$$

with probability $1 - \frac{1}{d}$. This is a very loose bound, but it's all that we will need. **Prove using Gaussian concentration.**

$$\frac{\alpha_j}{\alpha_1} = \frac{\sigma_j^{2T}}{\sigma_1^{2T}} \cdot \frac{c_j^{(0)}}{c_1^{(0)}} \le$$

Need
$$T =$$

POWER METHOD - NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector then, with high probability, after $T=O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ steps, we obtain a **z** satisfying:

$$\|\mathbf{X} - \mathbf{X}\mathbf{z}\mathbf{z}^T\|_F^2 \le (1 + \epsilon)\|\mathbf{X} - \mathbf{X}\mathbf{v}_1\mathbf{v}_1^T\|_F^2$$

GENERALIZATIONS TO LARGER K

 Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose $\mathbf{G} \in \mathbb{R}^{d \times k}$ be a random Gaussian matrix.
- $\mathbf{Z}_0 = \operatorname{orth}(\mathbf{G})$.
- For i = 1, ..., T
 - $\bullet \ \mathbf{Z}^{(i)} = \mathbf{X}^T \cdot (\mathbf{X}\mathbf{z}^{(i-1)})$
 - $\mathbf{Z}^{(i)} = \operatorname{orth}(\mathbf{z}^{(i)})$

Return $\mathbf{Z}^{(T)}$

Runtime: $O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ iterations to obtain a nearly optimal low-rank approximation:

$$\|\mathbf{X} - \mathbf{X}\mathbf{Z}\mathbf{Z}^T\|_F^2 \le (1 + \epsilon)\|\mathbf{X} - \mathbf{X}\mathbf{V_k}\mathbf{V_k}^T\|_F^2.$$